Integral motives and special values of zeta functions
Journal of the American Mathematical Society, Tome 17 (2004) no. 3, pp. 499-555 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

For each field $k$, we define a category of rationally decomposed mixed motives with $\mathbb {Z}$-coefficients. When $k$ is finite, we show that the category is Tannakian, and we prove formulas relating the behaviour of zeta functions near integers to certain $\operatorname {Ext}$ groups.
DOI : 10.1090/S0894-0347-04-00458-8

Milne, James 1 ; Ramachandran, Niranjan 2

1 2679 Bedford Road, Ann Arbor, Michigan 48104
2 Department of Mathematics, University of Maryland, College Park, Maryland 20742
@article{10_1090_S0894_0347_04_00458_8,
     author = {Milne, James and Ramachandran, Niranjan},
     title = {Integral motives and special values of zeta functions},
     journal = {Journal of the American Mathematical Society},
     pages = {499--555},
     year = {2004},
     volume = {17},
     number = {3},
     doi = {10.1090/S0894-0347-04-00458-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00458-8/}
}
TY  - JOUR
AU  - Milne, James
AU  - Ramachandran, Niranjan
TI  - Integral motives and special values of zeta functions
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 499
EP  - 555
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00458-8/
DO  - 10.1090/S0894-0347-04-00458-8
ID  - 10_1090_S0894_0347_04_00458_8
ER  - 
%0 Journal Article
%A Milne, James
%A Ramachandran, Niranjan
%T Integral motives and special values of zeta functions
%J Journal of the American Mathematical Society
%D 2004
%P 499-555
%V 17
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00458-8/
%R 10.1090/S0894-0347-04-00458-8
%F 10_1090_S0894_0347_04_00458_8
Milne, James; Ramachandran, Niranjan. Integral motives and special values of zeta functions. Journal of the American Mathematical Society, Tome 17 (2004) no. 3, pp. 499-555. doi: 10.1090/S0894-0347-04-00458-8

[1] André, Yves Pour une théorie inconditionnelle des motifs Inst. Hautes Études Sci. Publ. Math. 1996 5 49

[2] André, Yves, Kahn, Bruno Construction inconditionnelle de groupes de Galois motiviques C. R. Math. Acad. Sci. Paris 2002 989 994

[3] Atiyah, M. F., Hirzebruch, F. Analytic cycles on complex manifolds Topology 1962 25 45

[4] Classification of irregular varieties 1992

[5] Bloch, Spencer, Esnault, Hélène The coniveau filtration and non-divisibility for algebraic cycles Math. Ann. 1996 303 314

[6] Deligne, P. Le groupe fondamental de la droite projective moins trois points 1989 79 297

[7] Deligne, P. Catégories tannakiennes 1990 111 195

[8] Deligne, Pierre À quoi servent les motifs? 1994 143 161

[9] Deligne, Pierre, Milne, James S., Ogus, Arthur, Shih, Kuang-Yen Hodge cycles, motives, and Shimura varieties 1982

[10] Demazure, Michel Lectures on 𝑝-divisible groups 1972

[11] Dwyer, William G., Friedlander, Eric M. Algebraic and etale 𝐾-theory Trans. Amer. Math. Soc. 1985 247 280

[12] Ekedahl, Torsten Diagonal complexes and 𝐹-gauge structures 1986

[13] Rational points 1984

[14] Fontaine, Jean-Marc, Mazur, Barry Geometric Galois representations 1995 41 78

[15] Fontaine, J.-M., Illusie, L. 𝑝-adic periods: a survey 1993 57 93

[16] Gabber, Ofer Sur la torsion dans la cohomologie 𝑙-adique d’une variété C. R. Acad. Sci. Paris Sér. I Math. 1983 179 182

[17] Giraud, Jean Méthode de la descente Bull. Soc. Math. France Mém. 1964

[18] Giraud, Jean Cohomologie non abélienne 1971

[19] Griffiths, Phillip, Harris, Joe On the Noether-Lefschetz theorem and some remarks on codimension-two cycles Math. Ann. 1985 31 51

[20] Hanamura, Masaki Mixed motives and algebraic cycles. I Math. Res. Lett. 1995 811 821

[21] Hanamura, Masaki Mixed motives and algebraic cycles. III Math. Res. Lett. 1999 61 82

[22] Hiller, Howard L. 𝜆-rings and algebraic 𝐾-theory J. Pure Appl. Algebra 1981 241 266

[23] Huber, Annette Calculation of derived functors via Ind-categories J. Pure Appl. Algebra 1993 39 48

[24] Eagle, Albert Series for all the roots of a trinomial equation Amer. Math. Monthly 1939 422 425

[25] Jannsen, Uwe Motives, numerical equivalence, and semi-simplicity Invent. Math. 1992 447 452

[26] Jensen, C. U. Les foncteurs dérivés de \varprojlim et leurs applications en théorie des modules 1972

[27] De Jong, A. J. Smoothness, semi-stability and alterations Inst. Hautes Études Sci. Publ. Math. 1996 51 93

[28] De Jong, A. J. Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic Invent. Math. 1998 301 333

[29] Katz, Nicholas M., Messing, William Some consequences of the Riemann hypothesis for varieties over finite fields Invent. Math. 1974 73 77

[30] Kleiman, Steven L. The standard conjectures 1994 3 20

[31] Kratzer, Ch. 𝜆-structure en 𝐾-théorie algébrique Comment. Math. Helv. 1980 233 254

[32] Lang, Serge, Tate, John Principal homogeneous spaces over abelian varieties Amer. J. Math. 1958 659 684

[33] Levine, Marc Mixed motives 1998

[34] Milne, J. S. Extensions of abelian varieties defined over a finite field Invent. Math. 1968 63 84

[35] Milne, James S. Étale cohomology 1980

[36] Milne, J. S. Values of zeta functions of varieties over finite fields Amer. J. Math. 1986 297 360

[37] Milne, J. S. Arithmetic duality theorems 1986

[38] Milne, J. S. Motives over finite fields 1994 401 459

[39] Milne, J. S. Lefschetz motives and the Tate conjecture Compositio Math. 1999 45 76

[40] Mitchell, Barry Theory of categories 1965

[41] Oort, F. Yoneda extensions in abelian categories Math. Ann. 1964 227 235

[42] Quillen, Daniel On the cohomology and 𝐾-theory of the general linear groups over a finite field Ann. of Math. (2) 1972 552 586

[43] Roos, Jan-Erik Bidualité et structure des foncteurs dérivés de \varprojlim dans la catégorie des modules sur un anneau régulier C. R. Acad. Sci. Paris 1962 1556 1558

[44] Saavedra Rivano, Neantro Catégories Tannakiennes 1972

[45] Schoen, Chad An integral analog of the Tate conjecture for one-dimensional cycles on varieties over finite fields Math. Ann. 1998 493 500

[46] Serre, Jean-Pierre Groupes de Grothendieck des schémas en groupes réductifs déployés Inst. Hautes Études Sci. Publ. Math. 1968 37 52

[47] Soulé, C. 𝐾-théorie des anneaux d’entiers de corps de nombres et cohomologie étale Invent. Math. 1979 251 295

[48] Soulé, Christophe 𝐾-theory and values of zeta functions 1999 255 283

[49] Tate, John Endomorphisms of abelian varieties over finite fields Invent. Math. 1966 134 144

[50] Séminaire Bourbaki. Vol. 9 1995

[51] Tate, John Relations between 𝐾₂ and Galois cohomology Invent. Math. 1976 257 274

[52] Tate, John Conjectures on algebraic cycles in 𝑙-adic cohomology 1994 71 83

[53] Verdier, Jean-Louis Des catégories dérivées des catégories abéliennes Astérisque 1996

[54] Voevodsky, Vladimir, Suslin, Andrei, Friedlander, Eric M. Cycles, transfers, and motivic homology theories 2000

[55] Zarhin, Ju. G. Endomorphisms of Abelian varieties over fields of finite characteristic Izv. Akad. Nauk SSSR Ser. Mat. 1975

Cité par Sources :