Independence of ℓ of monodromy groups
Journal of the American Mathematical Society, Tome 17 (2004) no. 3, pp. 723-747 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

Let $X$ be a smooth curve over a finite field of characteristic $p$, let $E$ be a number field, and let $\mathbf {L} = \{\mathcal {L}_\lambda \}$ be an $E$-compatible system of lisse sheaves on the curve $X$. For each place $\lambda$ of $E$ not lying over $p$, the $\lambda$-component of the system $\mathbf {L}$ is a lisse $E_\lambda$-sheaf $\mathcal {L}_\lambda$ on $X$, whose associated arithmetic monodromy group is an algebraic group over the local field $E_\lambda$. We use Serre’s theory of Frobenius tori and Lafforgue’s proof of Deligne’s conjecture to show that when the $E$-compatible system $\mathbf {L}$ is semisimple and pure of some integer weight, the isomorphism type of the identity component of these monodromy groups is “independent of $\lambda$”. More precisely, after replacing $E$ by a finite extension, there exists a connected split reductive algebraic group $G_0$ over the number field $E$ such that for every place $\lambda$ of $E$ not lying over $p$, the identity component of the arithmetic monodromy group of $\mathcal {L}_\lambda$ is isomorphic to the group $G_0$ with coefficients extended to the local field $E_\lambda$.
DOI : 10.1090/S0894-0347-04-00456-4

Chin, CheeWhye 1, 2

1 Department of Mathematics, University of California, Berkeley, California 94720
2 The Broad Institute – MIT, 320 Charles Street, Cambridge, Massachusetts 02141
@article{10_1090_S0894_0347_04_00456_4,
     author = {Chin, CheeWhye},
     title = {Independence of \ensuremath{\ell} of monodromy groups},
     journal = {Journal of the American Mathematical Society},
     pages = {723--747},
     year = {2004},
     volume = {17},
     number = {3},
     doi = {10.1090/S0894-0347-04-00456-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00456-4/}
}
TY  - JOUR
AU  - Chin, CheeWhye
TI  - Independence of ℓ of monodromy groups
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 723
EP  - 747
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00456-4/
DO  - 10.1090/S0894-0347-04-00456-4
ID  - 10_1090_S0894_0347_04_00456_4
ER  - 
%0 Journal Article
%A Chin, CheeWhye
%T Independence of ℓ of monodromy groups
%J Journal of the American Mathematical Society
%D 2004
%P 723-747
%V 17
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00456-4/
%R 10.1090/S0894-0347-04-00456-4
%F 10_1090_S0894_0347_04_00456_4
Chin, CheeWhye. Independence of ℓ of monodromy groups. Journal of the American Mathematical Society, Tome 17 (2004) no. 3, pp. 723-747. doi: 10.1090/S0894-0347-04-00456-4

[1] Berthelot, Pierre Slopes of Frobenius in crystalline cohomology 1975 315 328

[2] Bourbaki, N. Éléments de mathématique. 23. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples 1958

[3] Deligne, Pierre La conjecture de Weil. I Inst. Hautes Études Sci. Publ. Math. 1974 273 307

[4] Deligne, Pierre Théorie de Hodge. II Inst. Hautes Études Sci. Publ. Math. 1971 5 57

[5] Deligne, Pierre La conjecture de Weil. II Inst. Hautes Études Sci. Publ. Math. 1980 137 252

[6] Demazure, Michel, Gabriel, Pierre Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs 1970

[7] De Jong, A. J. Smoothness, semi-stability and alterations Inst. Hautes Études Sci. Publ. Math. 1996 51 93

[8] Katz, Nicholas M. Space filling curves over finite fields Math. Res. Lett. 1999 613 624

[9] Katz, Nicholas M., Messing, William Some consequences of the Riemann hypothesis for varieties over finite fields Invent. Math. 1974 73 77

[10] Lafforgue, Laurent Chtoucas de Drinfeld et correspondance de Langlands Invent. Math. 2002 1 241

[11] Larsen, M., Pink, R. Determining representations from invariant dimensions Invent. Math. 1990 377 398

[12] Larsen, M., Pink, R. On 𝑙-independence of algebraic monodromy groups in compatible systems of representations Invent. Math. 1992 603 636

[13] Larsen, M., Pink, R. Abelian varieties, 𝑙-adic representations, and 𝑙-independence Math. Ann. 1995 561 579

[14] Serre, Jean-Pierre Zeta and 𝐿 functions 1965 82 92

[15] Serre, Jean-Pierre Œuvres. Collected papers. IV 2000

Cité par Sources :