Quantum groups, the loop Grassmannian, and the Springer resolution
Journal of the American Mathematical Society, Tome 17 (2004) no. 3, pp. 595-678 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

We establish equivalences of the following three triangulated categories: \[ D_\text {quantum}(\mathfrak {g})\enspace \longleftrightarrow \enspace D^G_\text {coherent}(\widetilde {{\mathcal N}})\enspace \longleftrightarrow \enspace D_\text {perverse}(\mathsf {Gr}).\] Here, $D_\text {quantum}(\mathfrak {g})$ is the derived category of the principal block of finite-dimensional representations of the quantized enveloping algebra (at an odd root of unity) of a complex semisimple Lie algebra $\mathfrak {g}$; the category $D^G_\text {coherent}(\widetilde {{\mathcal N}})$ is defined in terms of coherent sheaves on the cotangent bundle on the (finite-dimensional) flag manifold for $G$ ($=$ semisimple group with Lie algebra $\mathfrak {g}$), and the category $D_\text {perverse}({\mathsf {Gr}})$ is the derived category of perverse sheaves on the Grassmannian ${\mathsf {Gr}}$ associated with the loop group $LG^\vee$, where $G^\vee$ is the Langlands dual group, smooth along the Schubert stratification. The equivalence between $D_\text {quantum}(\mathfrak {g})$ and $D^G_\text {coherent}(\widetilde {{\mathcal N}})$ is an “enhancement” of the known expression (due to Ginzburg and Kumar) for quantum group cohomology in terms of nilpotent variety. The equivalence between $D_\text {perverse}(\mathsf {Gr})$ and $D^G_\text {coherent}(\widetilde {{\mathcal N}})$ can be viewed as a “categorification” of the isomorphism between two completely different geometric realizations of the (fundamental polynomial representation of the) affine Hecke algebra that has played a key role in the proof of the Deligne-Langlands-Lusztig conjecture. One realization is in terms of locally constant functions on the flag manifold of a $p$-adic reductive group, while the other is in terms of equivariant $K$-theory of a complex (Steinberg) variety for the dual group. The composite of the two equivalences above yields an equivalence between abelian categories of quantum group representations and perverse sheaves. A similar equivalence at an even root of unity can be deduced, following the Lusztig program, from earlier deep results of Kazhdan-Lusztig and Kashiwara-Tanisaki. Our approach is independent of these results and is totally different (it does not rely on the representation theory of Kac-Moody algebras). It also gives way to proving Humphreys’ conjectures on tilting $U_q(\mathfrak {g})$-modules, as will be explained in a separate paper.
DOI : 10.1090/S0894-0347-04-00454-0

Arkhipov, Sergey  1   ; Bezrukavnikov, Roman  2   ; Ginzburg, Victor  3

1 Department of Mathematics, Yale University, 10 Hillhouse Avenue, New Haven, Connecticut 06520
2 Department of Mathematics, Northwestern University, Evanston, Illinois 60208
3 Department of Mathematics, University of Chicago, Chicago, Illinois 60637
@article{10_1090_S0894_0347_04_00454_0,
     author = {Arkhipov, Sergey and Bezrukavnikov, Roman and Ginzburg, Victor},
     title = {Quantum groups, the loop {Grassmannian,} and the {Springer} resolution},
     journal = {Journal of the American Mathematical Society},
     pages = {595--678},
     year = {2004},
     volume = {17},
     number = {3},
     doi = {10.1090/S0894-0347-04-00454-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00454-0/}
}
TY  - JOUR
AU  - Arkhipov, Sergey
AU  - Bezrukavnikov, Roman
AU  - Ginzburg, Victor
TI  - Quantum groups, the loop Grassmannian, and the Springer resolution
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 595
EP  - 678
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00454-0/
DO  - 10.1090/S0894-0347-04-00454-0
ID  - 10_1090_S0894_0347_04_00454_0
ER  - 
%0 Journal Article
%A Arkhipov, Sergey
%A Bezrukavnikov, Roman
%A Ginzburg, Victor
%T Quantum groups, the loop Grassmannian, and the Springer resolution
%J Journal of the American Mathematical Society
%D 2004
%P 595-678
%V 17
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00454-0/
%R 10.1090/S0894-0347-04-00454-0
%F 10_1090_S0894_0347_04_00454_0
Arkhipov, Sergey; Bezrukavnikov, Roman; Ginzburg, Victor. Quantum groups, the loop Grassmannian, and the Springer resolution. Journal of the American Mathematical Society, Tome 17 (2004) no. 3, pp. 595-678. doi: 10.1090/S0894-0347-04-00454-0

[1] Andersen, Henning Haahr, Polo, Patrick, Wen, Ke Xin Representations of quantum algebras Invent. Math. 1991 1 59

[2] Andersen, Henning Haahr, Polo, Patrick, Kexin, Wen Injective modules for quantum algebras Amer. J. Math. 1992 571 604

[3] Andersen, Henning Haahr, Paradowski, Jan Fusion categories arising from semisimple Lie algebras Comm. Math. Phys. 1995 563 588

[4] Baum, Paul, Brylinski, Jean-Luc, Macpherson, Robert Cohomologie équivariante délocalisée C. R. Acad. Sci. Paris Sér. I Math. 1985 605 608

[5] Beĭlinson, A. A., Bernstein, J., Deligne, P. Faisceaux pervers 1982 5 171

[6] Beilinson, Alexander, Ginzburg, Victor Wall-crossing functors and 𝒟-modules Represent. Theory 1999 1 31

[7] Beilinson, Alexander, Ginzburg, Victor, Soergel, Wolfgang Koszul duality patterns in representation theory J. Amer. Math. Soc. 1996 473 527

[8] Beĭlinson, A. A., Ginsburg, V. A., Schechtman, V. V. Koszul duality J. Geom. Phys. 1988 317 350

[9] Bernšteĭn, I. N., Gel′Fand, I. M., Gel′Fand, S. I. Algebraic vector bundles on 𝑃ⁿ and problems of linear algebra Funktsional. Anal. i Prilozhen. 1978 66 67

[10] Bernstein, Joseph, Lunts, Valery Equivariant sheaves and functors 1994

[11] Bezrukavnikov, Roman Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone Represent. Theory 2003 1 18

[12] Bezrukavnikov, Roman, Finkelberg, Michael, Schechtman, Vadim Factorizable sheaves and quantum groups 1998

[13] Brylinski, Ranee Kathryn Limits of weight spaces, Lusztig’s 𝑞-analogs, and fiberings of adjoint orbits J. Amer. Math. Soc. 1989 517 533

[14] Chriss, Neil, Ginzburg, Victor Representation theory and complex geometry 1997

[15] Cline, E., Parshall, B., Scott, L. Finite-dimensional algebras and highest weight categories J. Reine Angew. Math. 1988 85 99

[16] Deligne, Pierre La conjecture de Weil. II Inst. Hautes Études Sci. Publ. Math. 1980 137 252

[17] Deligne, Pierre, Milne, James S., Ogus, Arthur, Shih, Kuang-Yen Hodge cycles, motives, and Shimura varieties 1982

[18] De Concini, Corrado, Kac, Victor G. Representations of quantum groups at roots of 1 1990 471 506

[19] De Concini, Corrado, Lyubashenko, Volodimir Quantum function algebra at roots of 1 Adv. Math. 1994 205 262

[20] De Concini, C., Kac, V. G., Procesi, C. Quantum coadjoint action J. Amer. Math. Soc. 1992 151 189

[21] Gaitsgory, D. Construction of central elements in the affine Hecke algebra via nearby cycles Invent. Math. 2001 253 280

[22] Gelfand, Sergei I., Manin, Yuri I. Methods of homological algebra 2003

[23] Ginsburg, Victor Perverse sheaves and 𝐶*-actions J. Amer. Math. Soc. 1991 483 490

[24] Ginzburg, Victor, Kumar, Shrawan Cohomology of quantum groups at roots of unity Duke Math. J. 1993 179 198

[25] Goresky, Mark, Kottwitz, Robert, Macpherson, Robert Equivariant cohomology, Koszul duality, and the localization theorem Invent. Math. 1998 25 83

[26] Jantzen, Jens Carsten Representations of algebraic groups 1987

[27] Joseph, Anthony Quantum groups and their primitive ideals 1995

[28] Kazhdan, David, Lusztig, George Schubert varieties and Poincaré duality 1980 185 203

[29] Kazhdan, D., Lusztig, G. Tensor structures arising from affine Lie algebras. I, II J. Amer. Math. Soc. 1993

[30] Kazhdan, David, Lusztig, George Proof of the Deligne-Langlands conjecture for Hecke algebras Invent. Math. 1987 153 215

[31] Keller, Bernhard Deriving DG categories Ann. Sci. École Norm. Sup. (4) 1994 63 102

[32] Kostant, Bertram Lie group representations on polynomial rings Amer. J. Math. 1963 327 404

[33] Kashiwara, Masaki, Tanisaki, Toshiyuki Kazhdan-Lusztig conjecture for affine Lie algebras with negative level Duke Math. J. 1995 21 62

[34] Loday, Jean-Louis Cyclic homology 1992

[35] Lusztig, George Singularities, character formulas, and a 𝑞-analog of weight multiplicities 1983 208 229

[36] Lusztig, George Introduction to quantum groups 1993

[37] Lusztig, George Quantum groups at roots of 1 Geom. Dedicata 1990 89 113

[38] Lusztig, G. Cells in affine Weyl groups and tensor categories Adv. Math. 1997 85 98

[39] Lusztig, George Monodromic systems on affine flag manifolds Proc. Roy. Soc. London Ser. A 1994 231 246

[40] Mirković, Ivan, Vilonen, Kari Perverse sheaves on affine Grassmannians and Langlands duality Math. Res. Lett. 2000 13 24

[41] Montgomery, Susan Fixed rings of finite automorphism groups of associative rings 1980

[42] Pressley, Andrew, Segal, Graeme Loop groups 1986

[43] Tanisaki, Toshiyuki Hodge modules, equivariant 𝐾-theory and Hecke algebras Publ. Res. Inst. Math. Sci. 1987 841 879

[44] Vogan, David A., Jr. Representations of real reductive Lie groups 1981

Cité par Sources :