On Neumann eigenfunctions in lip domains
Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 243-265

Voir la notice de l'article provenant de la source American Mathematical Society

A “lip domain” is a planar set lying between graphs of two Lipschitz functions with constant 1. We show that the second Neumann eigenvalue is simple in every lip domain except the square. The corresponding eigenfunction attains its maximum and minimum at the boundary points at the extreme left and right. This settles the “hot spots” conjecture for lip domains as well as two conjectures of Jerison and Nadirashvili. Our techniques are probabilistic in nature and may have independent interest.
DOI : 10.1090/S0894-0347-04-00453-9

Atar, Rami 1 ; Burdzy, Krzysztof 2

1 Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
2 Department of Mathematics, University of Washington, Seattle, Washington 98195-4350
@article{10_1090_S0894_0347_04_00453_9,
     author = {Atar, Rami and Burdzy, Krzysztof},
     title = {On {Neumann} eigenfunctions in lip domains},
     journal = {Journal of the American Mathematical Society},
     pages = {243--265},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2004},
     doi = {10.1090/S0894-0347-04-00453-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00453-9/}
}
TY  - JOUR
AU  - Atar, Rami
AU  - Burdzy, Krzysztof
TI  - On Neumann eigenfunctions in lip domains
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 243
EP  - 265
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00453-9/
DO  - 10.1090/S0894-0347-04-00453-9
ID  - 10_1090_S0894_0347_04_00453_9
ER  - 
%0 Journal Article
%A Atar, Rami
%A Burdzy, Krzysztof
%T On Neumann eigenfunctions in lip domains
%J Journal of the American Mathematical Society
%D 2004
%P 243-265
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00453-9/
%R 10.1090/S0894-0347-04-00453-9
%F 10_1090_S0894_0347_04_00453_9
Atar, Rami; Burdzy, Krzysztof. On Neumann eigenfunctions in lip domains. Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 243-265. doi: 10.1090/S0894-0347-04-00453-9

[1] Adelman, Omer, Burdzy, Krzysztof, Pemantle, Robin Sets avoided by Brownian motion Ann. Probab. 1998 429 464

[2] Atar, Rami Invariant wedges for a two-point reflecting Brownian motion and the “hot spots” problem Electron. J. Probab. 2001

[3] Baã±Uelos, Rodrigo, Burdzy, Krzysztof On the “hot spots” conjecture of J. Rauch J. Funct. Anal. 1999 1 33

[4] Bass, Richard F., Burdzy, Krzysztof Lifetimes of conditioned diffusions Probab. Theory Related Fields 1992 405 443

[5] Bass, Richard F., Burdzy, Krzysztof Fiber Brownian motion and the “hot spots” problem Duke Math. J. 2000 25 58

[6] Bass, Richard F., Hsu, Pei Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains Ann. Probab. 1991 486 508

[7] Burdzy, Krzysztof, Chen, Zen-Qing Weak convergence of reflecting Brownian motions Electron. Comm. Probab. 1998 29 33

[8] Burdzy, Krzysztof, Chen, Zhen-Qing Coalescence of synchronous couplings Probab. Theory Related Fields 2002 553 578

[9] Burdzy, Krzysztof, Kendall, Wilfrid S. Efficient Markovian couplings: examples and counterexamples Ann. Appl. Probab. 2000 362 409

[10] Burdzy, Krzysztof, Werner, Wendelin A counterexample to the “hot spots” conjecture Ann. of Math. (2) 1999 309 317

[11] Chung, Kai Lai The lifetime of conditional Brownian motion in the plane Ann. Inst. H. Poincaré Probab. Statist. 1984 349 351

[12] Doob, J. L. Classical potential theory and its probabilistic counterpart 1984

[13] Hempel, Rainer, Seco, Luis A., Simon, Barry The essential spectrum of Neumann Laplacians on some bounded singular domains J. Funct. Anal. 1991 448 483

[14] Jerison, David, Nadirashvili, Nikolai The “hot spots” conjecture for domains with two axes of symmetry J. Amer. Math. Soc. 2000 741 772

[15] Karatzas, Ioannis, Shreve, Steven E. Brownian motion and stochastic calculus 1991

[16] Kawohl, Bernhard Rearrangements and convexity of level sets in PDE 1985

[17] Kendall, Wilfrid S. Coupled Brownian motions and partial domain monotonicity for the Neumann heat kernel J. Funct. Anal. 1989 226 236

[18] Sharpe, Michael General theory of Markov processes 1988

[19] Lions, P.-L., Sznitman, A.-S. Stochastic differential equations with reflecting boundary conditions Comm. Pure Appl. Math. 1984 511 537

[20] Pascu, Mihai N. Scaling coupling of reflecting Brownian motions and the hot spots problem Trans. Amer. Math. Soc. 2002 4681 4702

[21] Protter, Philip Stochastic integration and differential equations 1990

[22] Wang, Feng Yu Application of coupling methods to the Neumann eigenvalue problem Probab. Theory Related Fields 1994 299 306

Cité par Sources :