Geometric control in the presence of a black box
Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 443-471

Voir la notice de l'article provenant de la source American Mathematical Society

We apply the “black box scattering” point of view to problems in control theory for the Schrödinger equation and in high energy eigenvalue scarring. We show how resolvent bounds with origins in scattering theory, combined with semi-classical propagation, give quantitative control estimates. We also show how they imply control for time dependent problems.
DOI : 10.1090/S0894-0347-04-00452-7

Burq, Nicolas 1 ; Zworski, Maciej 2

1 Université Paris Sud, Mathématiques, Bât 425, 91405 Orsay Cedex, France
2 Mathematics Department, University of California, Evans Hall, Berkeley, California 94720
@article{10_1090_S0894_0347_04_00452_7,
     author = {Burq, Nicolas and Zworski, Maciej},
     title = {Geometric control in the presence of a black box},
     journal = {Journal of the American Mathematical Society},
     pages = {443--471},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2004},
     doi = {10.1090/S0894-0347-04-00452-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00452-7/}
}
TY  - JOUR
AU  - Burq, Nicolas
AU  - Zworski, Maciej
TI  - Geometric control in the presence of a black box
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 443
EP  - 471
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00452-7/
DO  - 10.1090/S0894-0347-04-00452-7
ID  - 10_1090_S0894_0347_04_00452_7
ER  - 
%0 Journal Article
%A Burq, Nicolas
%A Zworski, Maciej
%T Geometric control in the presence of a black box
%J Journal of the American Mathematical Society
%D 2004
%P 443-471
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-04-00452-7/
%R 10.1090/S0894-0347-04-00452-7
%F 10_1090_S0894_0347_04_00452_7
Burq, Nicolas; Zworski, Maciej. Geometric control in the presence of a black box. Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 443-471. doi: 10.1090/S0894-0347-04-00452-7

[1] Bardos, Claude, Lebeau, Gilles, Rauch, Jeffrey Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary SIAM J. Control Optim. 1992 1024 1065

[2] Burq, Nicolas Contrôle de l’équation des plaques en présence d’obstacles strictement convexes Mém. Soc. Math. France (N.S.) 1993 126

[3] Burq, Nicolas Semi-classical estimates for the resolvent in nontrapping geometries Int. Math. Res. Not. 2002 221 241

[4] Burq, Nicolas, Gã©Rard, Patrick Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes C. R. Acad. Sci. Paris Sér. I Math. 1997 749 752

[5] Burq, Nicolas, Lebeau, Gilles Mesures de défaut de compacité, application au système de Lamé Ann. Sci. École Norm. Sup. (4) 2001 817 870

[6] Christiansen, T., Zworski, M. Resonance wave expansions: two hyperbolic examples Comm. Math. Phys. 2000 323 336

[7] Colin De Verdiã¨Re, Yves, Parisse, Bernard Équilibre instable en régime semi-classique. I. Concentration microlocale Comm. Partial Differential Equations 1994 1535 1563

[8] Dimassi, Mouez, Sjã¶Strand, Johannes Spectral asymptotics in the semi-classical limit 1999

[9] Gã©Rard, C. Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes Mém. Soc. Math. France (N.S.) 1988 146

[10] Gã©Rard, C., Sjã¶Strand, J. Resonances en limite semiclassique et exposants de Lyapunov Comm. Math. Phys. 1988 193 213

[11] Gã©Rard, Patrick, Leichtnam, ÉRic Ergodic properties of eigenfunctions for the Dirichlet problem Duke Math. J. 1993 559 607

[12] Guillopã©, Laurent Sur la distribution des longueurs des géodésiques fermées d’une surface compacte à bord totalement géodésique Duke Math. J. 1986 827 848

[13] Franã§Oise, J.-P., Guillemin, V. On the period spectrum of a symplectic mapping J. Funct. Anal. 1991 317 358

[14] Haraux, A. Séries lacunaires et contrôle semi-interne des vibrations d’une plaque rectangulaire J. Math. Pures Appl. (9) 1989

[15] Helffer, B., Sjã¶Strand, J. Résonances en limite semi-classique Mém. Soc. Math. France (N.S.) 1986

[16] BçŽDescu, Radu On a problem of Goursat Gaz. Mat. 1939 571 577

[17] Iantchenko, A., Sjã¶Strand, J., Zworski, M. Birkhoff normal forms in semi-classical inverse problems Math. Res. Lett. 2002 337 362

[18] Ikawa, Mitsuru Decay of solutions of the wave equation in the exterior of several convex bodies Ann. Inst. Fourier (Grenoble) 1988 113 146

[19] Jaffard, S. Contrôle interne exact des vibrations d’une plaque rectangulaire Portugal. Math. 1990 423 429

[20] Kahane, Jean-Pierre Pseudo-périodicité et séries de Fourier lacunaires Ann. Sci. École Norm. Sup. (3) 1962 93 150

[21] Lebeau, G. Contrôle de l’équation de Schrödinger J. Math. Pures Appl. (9) 1992 267 291

[22] Lions, J.-L. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1 1988

[23] Epstein, Leo F. A function related to the series for 𝑒^{𝑒^{𝑥}} J. Math. Phys. Mass. Inst. Tech. 1939 153 173

[24] Sarnak, Peter Arithmetic quantum chaos 1995 183 236

[25] Sjã¶Strand, Johannes Geometric bounds on the density of resonances for semiclassical problems Duke Math. J. 1990 1 57

[26] Sjã¶Strand, J. A trace formula and review of some estimates for resonances 1997 377 437

[27] Sjã¶Strand, Johannes, Zworski, Maciej Complex scaling and the distribution of scattering poles J. Amer. Math. Soc. 1991 729 769

[28] Tang, Siu-Hung, Zworski, Maciej From quasimodes to resonances Math. Res. Lett. 1998 261 272

[29] Wunsch, Jared, Zworski, Maciej Distribution of resonances for asymptotically Euclidean manifolds J. Differential Geom. 2000 43 82

[30] Zelditch, Steven, Zworski, Maciej Ergodicity of eigenfunctions for ergodic billiards Comm. Math. Phys. 1996 673 682

[31] Lions, J.-L. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1 1988

Cité par Sources :