Plurisubharmonic domination
Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 361-372

Voir la notice de l'article provenant de la source American Mathematical Society

For a large class of separable Banach spaces $X$ we prove the following. Given a pseudoconvex open $\Omega \subset X$ and $u:\Omega \to \mathbb {R}$ that is locally bounded above, there is a plurisubharmonic $v:\Omega \to \mathbb {R}$ such that $u\le v$. We also discuss applications of this result.
DOI : 10.1090/S0894-0347-03-00448-X

Lempert, László 1

1 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
@article{10_1090_S0894_0347_03_00448_X,
     author = {Lempert, L\~A{\textexclamdown}szl\~A{\textthreesuperior}},
     title = {Plurisubharmonic domination},
     journal = {Journal of the American Mathematical Society},
     pages = {361--372},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2004},
     doi = {10.1090/S0894-0347-03-00448-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00448-X/}
}
TY  - JOUR
AU  - Lempert, László
TI  - Plurisubharmonic domination
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 361
EP  - 372
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00448-X/
DO  - 10.1090/S0894-0347-03-00448-X
ID  - 10_1090_S0894_0347_03_00448_X
ER  - 
%0 Journal Article
%A Lempert, László
%T Plurisubharmonic domination
%J Journal of the American Mathematical Society
%D 2004
%P 361-372
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00448-X/
%R 10.1090/S0894-0347-03-00448-X
%F 10_1090_S0894_0347_03_00448_X
Lempert, László. Plurisubharmonic domination. Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 361-372. doi: 10.1090/S0894-0347-03-00448-X

[1] Bishop, Errett Mappings of partially analytic spaces Amer. J. Math. 1961 209 242

[2] Bonic, Robert, Frampton, John Smooth functions on Banach manifolds J. Math. Mech. 1966 877 898

[3] Dineen, Seã¡N Bounding subsets of a Banach space Math. Ann. 1971 61 70

[4] Hã¶Rmander, Lars An introduction to complex analysis in several variables 1990

[5] Josefson, Bengt Bounding subsets of 𝑙^{∞}(𝐴) J. Math. Pures Appl. (9) 1978 397 421

[6] Lempert, Lã¡Szlã³ The Dolbeault complex in infinite dimensions. I J. Amer. Math. Soc. 1998 485 520

[7] Lempert, Lã¡Szlã³ Approximation of holomorphic functions of infinitely many variables. II Ann. Inst. Fourier (Grenoble) 2000 423 442

[8] Lempert, Lã¡Szlã³ The Dolbeault complex in infinite dimensions. III. Sheaf cohomology in Banach spaces Invent. Math. 2000 579 603

[9] Mujica, Jorge Complex analysis in Banach spaces 1986

[10] Narasimhan, Raghavan Imbedding of holomorphically complete complex spaces Amer. J. Math. 1960 917 934

[11] Noverraz, Philippe Pseudo-convexité, convexité polynomiale et domaines d’holomorphie en dimension infinie 1973

[12] Patyi, Imre On the \overline∂-equation in a Banach space Bull. Soc. Math. France 2000 391 406

[13] Marcinkiewicz, Jã³Zef, Zygmund, Antoni Sur la dérivée seconde généralisée Bull. Sém. Math. Univ. Wilno 1939 35 40

[14] Siu, Yum Tong Every Stein subvariety admits a Stein neighborhood Invent. Math. 1976/77 89 100

Cité par Sources :