Isoperimetric inequalities in crystallography
Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 373-388

Voir la notice de l'article provenant de la source American Mathematical Society

Given a cubic space group $\mathcal G$ (viewed as a finite group of isometries of the torus $T=\mathbb {R}^3/\mathbb {Z}^3$), we obtain sharp isoperimetric inequalities for $\mathcal G$-invariant regions. These inequalities depend on the minimum number of points in an orbit of $\mathcal G$ and on the largest Euler characteristic among nonspherical $\mathcal G$-symmetric surfaces minimizing the area under volume constraint (we also give explicit estimates of this second invariant for the various crystallographic cubic groups $\mathcal G$). As an example, we prove that any surface dividing $T$ into two equal volumes with the same (orientation-preserving) symmetries as the A. Schoen minimal Gyroid has area at least $3.00$ (the conjectured minimizing surface in this case is the Gyroid itself whose area is $3.09$).
DOI : 10.1090/S0894-0347-03-00447-8

Ros, Antonio 1

1 Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
@article{10_1090_S0894_0347_03_00447_8,
     author = {Ros, Antonio},
     title = {Isoperimetric inequalities in crystallography},
     journal = {Journal of the American Mathematical Society},
     pages = {373--388},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2004},
     doi = {10.1090/S0894-0347-03-00447-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00447-8/}
}
TY  - JOUR
AU  - Ros, Antonio
TI  - Isoperimetric inequalities in crystallography
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 373
EP  - 388
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00447-8/
DO  - 10.1090/S0894-0347-03-00447-8
ID  - 10_1090_S0894_0347_03_00447_8
ER  - 
%0 Journal Article
%A Ros, Antonio
%T Isoperimetric inequalities in crystallography
%J Journal of the American Mathematical Society
%D 2004
%P 373-388
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00447-8/
%R 10.1090/S0894-0347-03-00447-8
%F 10_1090_S0894_0347_03_00447_8
Ros, Antonio. Isoperimetric inequalities in crystallography. Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 373-388. doi: 10.1090/S0894-0347-03-00447-8

[1] Maclane, Saunders, Schilling, O. F. G. Infinite number fields with Noether ideal theories Amer. J. Math. 1939 771 782

[2] Almgren, F. J., Jr. Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints Mem. Amer. Math. Soc. 1976

[3] Bavard, Christophe, Pansu, Pierre Sur le volume minimal de 𝑅² Ann. Sci. École Norm. Sup. (4) 1986 479 490

[4] Dunbar, William D. Geometric orbifolds Rev. Mat. Univ. Complut. Madrid 1988 67 99

[5] Fischer, W., Koch, E. Spanning minimal surfaces Philos. Trans. Roy. Soc. London Ser. A 1996 2105 2142

[6] Gonzalez, E., Massari, U., Tamanini, I. On the regularity of boundaries of sets minimizing perimeter with a volume constraint Indiana Univ. Math. J. 1983 25 37

[7] GroãŸE-Brauckmann, Karsten Gyroids of constant mean curvature Experiment. Math. 1997 33 50

[8] Hadwiger, H. Gitterperiodische Punktmengen und Isoperimetrie Monatsh. Math. 1972 410 418

[9] Karcher, Hermann, Polthier, Konrad Construction of triply periodic minimal surfaces Philos. Trans. Roy. Soc. London Ser. A 1996 2077 2104

[10] Korevaar, Nicholas J., Kusner, Rob, Solomon, Bruce The structure of complete embedded surfaces with constant mean curvature J. Differential Geom. 1989 465 503

[11] Morgan, Frank, Johnson, David L. Some sharp isoperimetric theorems for Riemannian manifolds Indiana Univ. Math. J. 2000 1017 1041

[12] O’Keeffe, M., Plã©Vert, J., Teshima, Y., Watanabe, Y., Ogama, T. The invariant cubic rod (cylinder) packings: symmetries and coordinates Acta Cryst. Sect. A 2001 110 111

[13] O’Keeffe, M., Plã©Vert, J., Ogawa, T. Homogeneous cubic cylinder packings revisited Acta Crystallogr. Sect. A 2002 125 132

[14] Ritorã©, Manuel, Ros, Antonio Stable constant mean curvature tori and the isoperimetric problem in three space forms Comment. Math. Helv. 1992 293 305

[15] Ritorã©, Manuel, Ros, Antonio The spaces of index one minimal surfaces and stable constant mean curvature surfaces embedded in flat three manifolds Trans. Amer. Math. Soc. 1996 391 410

Cité par Sources :