On the size of ð-fold sum and product sets of integers
    
    
  
  
  
      
      
      
        
Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 473-497
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source American Mathematical Society
            
              In this paper, we show that for all $b > 1$ there is a positive integer $k=k(b)$ such that if $A$ is an arbitrary finite set of integers, $|A|=N>2$, then either $|kA|>N^{b}$ or $|A^{(k)}|>N^{b}$. Here $kA$ (resp. $A^{(k)}$) denotes the $k$-fold sum (resp. product) of $A$. This fact is deduced from the following harmonic analysis result obtained in the paper. For all $q>2$ and $\epsilon >0$, there is a $\delta >0$ such that if $A$ satisfies $|A \cdot A| N^{\delta }|A|$, then the $\lambda _q$-constant $\lambda _{q}(A)$ of $A$ (in the sense of W. Rudin) is at most $N^{\epsilon }$.        
            
            
            
          
        
      
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Bourgain, Jean 1 ; Chang, Mei-Chu 2
@article{10_1090_S0894_0347_03_00446_6,
     author = {Bourgain, Jean and Chang, Mei-Chu},
     title = {On the size of {\dh}-fold sum and product sets of integers},
     journal = {Journal of the American Mathematical Society},
     pages = {473--497},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2004},
     doi = {10.1090/S0894-0347-03-00446-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00446-6/}
}
                      
                      
                    TY - JOUR AU - Bourgain, Jean AU - Chang, Mei-Chu TI - On the size of ð-fold sum and product sets of integers JO - Journal of the American Mathematical Society PY - 2004 SP - 473 EP - 497 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00446-6/ DO - 10.1090/S0894-0347-03-00446-6 ID - 10_1090_S0894_0347_03_00446_6 ER -
%0 Journal Article %A Bourgain, Jean %A Chang, Mei-Chu %T On the size of ð-fold sum and product sets of integers %J Journal of the American Mathematical Society %D 2004 %P 473-497 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00446-6/ %R 10.1090/S0894-0347-03-00446-6 %F 10_1090_S0894_0347_03_00446_6
Bourgain, Jean; Chang, Mei-Chu. On the size of ð-fold sum and product sets of integers. Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 473-497. doi: 10.1090/S0894-0347-03-00446-6
[1] On the number of sums and products Acta Arith. 1997 365 367
[2] , , Convexity and sumsets J. Number Theory 2000 194 201
[3] , On sums and products of integers 1983 213 218
[4] A new proof of Szemerédiâs theorem for arithmetic progressions of length four Geom. Funct. Anal. 1998 529 551
[5] Banach spaces and classical harmonic analysis 2001 871 898
[6] Additive number theory 1996
Cité par Sources :
