On the size of 𝑘-fold sum and product sets of integers
Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 473-497

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper, we show that for all $b > 1$ there is a positive integer $k=k(b)$ such that if $A$ is an arbitrary finite set of integers, $|A|=N>2$, then either $|kA|>N^{b}$ or $|A^{(k)}|>N^{b}$. Here $kA$ (resp. $A^{(k)}$) denotes the $k$-fold sum (resp. product) of $A$. This fact is deduced from the following harmonic analysis result obtained in the paper. For all $q>2$ and $\epsilon >0$, there is a $\delta >0$ such that if $A$ satisfies $|A \cdot A| N^{\delta }|A|$, then the $\lambda _q$-constant $\lambda _{q}(A)$ of $A$ (in the sense of W. Rudin) is at most $N^{\epsilon }$.
DOI : 10.1090/S0894-0347-03-00446-6

Bourgain, Jean 1 ; Chang, Mei-Chu 2

1 Institute for Advanced Study, Olden Lane, Princeton, New Jersey 08540
2 Mathematics Department, University of California, Riverside, California 92521
@article{10_1090_S0894_0347_03_00446_6,
     author = {Bourgain, Jean and Chang, Mei-Chu},
     title = {On the size of {\dh}‘˜-fold sum and product sets of integers},
     journal = {Journal of the American Mathematical Society},
     pages = {473--497},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2004},
     doi = {10.1090/S0894-0347-03-00446-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00446-6/}
}
TY  - JOUR
AU  - Bourgain, Jean
AU  - Chang, Mei-Chu
TI  - On the size of 𝑘-fold sum and product sets of integers
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 473
EP  - 497
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00446-6/
DO  - 10.1090/S0894-0347-03-00446-6
ID  - 10_1090_S0894_0347_03_00446_6
ER  - 
%0 Journal Article
%A Bourgain, Jean
%A Chang, Mei-Chu
%T On the size of 𝑘-fold sum and product sets of integers
%J Journal of the American Mathematical Society
%D 2004
%P 473-497
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00446-6/
%R 10.1090/S0894-0347-03-00446-6
%F 10_1090_S0894_0347_03_00446_6
Bourgain, Jean; Chang, Mei-Chu. On the size of 𝑘-fold sum and product sets of integers. Journal of the American Mathematical Society, Tome 17 (2004) no. 2, pp. 473-497. doi: 10.1090/S0894-0347-03-00446-6

[1] Elekes, Gyã¶Rgy On the number of sums and products Acta Arith. 1997 365 367

[2] Elekes, Gyã¶Rgy, Nathanson, Melvyn B., Ruzsa, Imre Z. Convexity and sumsets J. Number Theory 2000 194 201

[3] Erdå‘S, P., Szemerã©Di, E. On sums and products of integers 1983 213 218

[4] Gowers, W. T. A new proof of Szemerédi’s theorem for arithmetic progressions of length four Geom. Funct. Anal. 1998 529 551

[5] Kislyakov, S. V. Banach spaces and classical harmonic analysis 2001 871 898

[6] Nathanson, Melvyn B. Additive number theory 1996

Cité par Sources :