The tame and the wild automorphisms of polynomial rings in three variables
Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 197-227

Voir la notice de l'article provenant de la source American Mathematical Society

A characterization of tame automorphisms of the algebra $A=F[x_1,x_2,x_3]$ of polynomials in three variables over a field $F$ of characteristic $0$ is obtained. In particular, it is proved that the well-known Nagata automorphism is wild. It is also proved that the tame and the wild automorphisms of $A$ are algorithmically recognizable.
DOI : 10.1090/S0894-0347-03-00440-5

Shestakov, Ivan 1 ; Umirbaev, Ualbai 2

1 Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, São Paulo - SP, 05311–970, Brazil; Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
2 Department of Mathematics, Eurasian National University, Astana, 473021, Kazakhstan
@article{10_1090_S0894_0347_03_00440_5,
     author = {Shestakov, Ivan and Umirbaev, Ualbai},
     title = {The tame and the wild automorphisms of polynomial rings in three variables},
     journal = {Journal of the American Mathematical Society},
     pages = {197--227},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2004},
     doi = {10.1090/S0894-0347-03-00440-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00440-5/}
}
TY  - JOUR
AU  - Shestakov, Ivan
AU  - Umirbaev, Ualbai
TI  - The tame and the wild automorphisms of polynomial rings in three variables
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 197
EP  - 227
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00440-5/
DO  - 10.1090/S0894-0347-03-00440-5
ID  - 10_1090_S0894_0347_03_00440_5
ER  - 
%0 Journal Article
%A Shestakov, Ivan
%A Umirbaev, Ualbai
%T The tame and the wild automorphisms of polynomial rings in three variables
%J Journal of the American Mathematical Society
%D 2004
%P 197-227
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00440-5/
%R 10.1090/S0894-0347-03-00440-5
%F 10_1090_S0894_0347_03_00440_5
Shestakov, Ivan; Umirbaev, Ualbai. The tame and the wild automorphisms of polynomial rings in three variables. Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 197-227. doi: 10.1090/S0894-0347-03-00440-5

[1] Abdykhalykov, A. T., Mikhalev, A. A., Umirbaev, U. U. Automorphisms of two-generated free Leibniz algebras Comm. Algebra 2001 2953 2960

[2] Bass, Hyman Automorphisms of polynomial rings 1983 762 771

[3] Cohn, P. M. Free rings and their relations 1985

[4] Kershner, Richard The number of circles covering a set Amer. J. Math. 1939 665 671

[5] Drensky, Vesselin, Yu, Jie-Tai Tame and wild coordinates of 𝐾[𝑧][𝑥,𝑦] Trans. Amer. Math. Soc. 2001 519 537

[6] Van Den Essen, Arno Polynomial automorphisms and the Jacobian conjecture 2000

[7] Eagle, Albert Series for all the roots of a trinomial equation Amer. Math. Monthly 1939 422 425

[8] Hebroni, P. Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287

[9] Makar-Limanov, L. G. The automorphisms of the free algebra with two generators Funkcional. Anal. i Priložen. 1970 107 108

[10] Nagata, Masayoshi On automorphism group of 𝑘[𝑥,𝑦] 1972

[11] Noskov, G. A. The cancellation problem for a ring of polynomials Sibirsk. Mat. Zh. 1978

[12] Shannon, David, Sweedler, Moss Using Gröbner bases to determine algebra membership, split surjective algebra homomorphisms determine birational equivalence J. Symbolic Comput. 1988 267 273

[13] Shestakov, I. P. Quantization of Poisson superalgebras and the specialty of Jordan superalgebras of Poisson type Algebra i Logika 1993

[14] Smith, Martha K. Stably tame automorphisms J. Pure Appl. Algebra 1989 209 212

[15] Umirbaev, Ualbaä­ U. Universal derivations and subalgebras of free algebras 1996 255 271

Cité par Sources :