Poisson brackets and two-generated subalgebras of rings of polynomials
Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 181-196 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

We introduce a Poisson bracket on the ring of polynomials $A=F[x_1,x_2, \ldots ,x_n]$ over a field $F$ of characteristic $0$ and apply it to the investigation of subalgebras of the algebra $A$. An analogue of the Bergman Centralizer Theorem is proved for the Poisson bracket in $A$. The main result is a lower estimate for the degrees of elements of subalgebras of $A$ generated by so-called $\ast$-reduced pairs of polynomials. The estimate involves a certain invariant of the pair which depends on the degrees of the generators and of their Poisson bracket. It yields, in particular, a new proof of the Jung theorem on the automorphisms of polynomials in two variables. Some relevant examples of two-generated subalgebras are given and some open problems are formulated.
DOI : 10.1090/S0894-0347-03-00438-7

Shestakov, Ivan  1   ; Umirbaev, Ualbai  2

1 Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, São Paulo - SP, 05311–970, Brazil; Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
2 Department of Mathematics, Eurasian National University, Astana, 473021, Kazakhstan
@article{10_1090_S0894_0347_03_00438_7,
     author = {Shestakov, Ivan and Umirbaev, Ualbai},
     title = {Poisson brackets and two-generated subalgebras of rings of polynomials},
     journal = {Journal of the American Mathematical Society},
     pages = {181--196},
     year = {2004},
     volume = {17},
     number = {1},
     doi = {10.1090/S0894-0347-03-00438-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00438-7/}
}
TY  - JOUR
AU  - Shestakov, Ivan
AU  - Umirbaev, Ualbai
TI  - Poisson brackets and two-generated subalgebras of rings of polynomials
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 181
EP  - 196
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00438-7/
DO  - 10.1090/S0894-0347-03-00438-7
ID  - 10_1090_S0894_0347_03_00438_7
ER  - 
%0 Journal Article
%A Shestakov, Ivan
%A Umirbaev, Ualbai
%T Poisson brackets and two-generated subalgebras of rings of polynomials
%J Journal of the American Mathematical Society
%D 2004
%P 181-196
%V 17
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00438-7/
%R 10.1090/S0894-0347-03-00438-7
%F 10_1090_S0894_0347_03_00438_7
Shestakov, Ivan; Umirbaev, Ualbai. Poisson brackets and two-generated subalgebras of rings of polynomials. Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 181-196. doi: 10.1090/S0894-0347-03-00438-7

[1] Abhyankar, Shreeram S., Moh, Tzuong Tsieng Embeddings of the line in the plane J. Reine Angew. Math. 1975 148 166

[2] Bass, Hyman, Connell, Edwin H., Wright, David The Jacobian conjecture: reduction of degree and formal expansion of the inverse Bull. Amer. Math. Soc. (N.S.) 1982 287 330

[3] Bergman, George M. Centralizers in free associative algebras Trans. Amer. Math. Soc. 1969 327 344

[4] Cohn, P. M. Free rings and their relations 1985

[5] Eagle, Albert Series for all the roots of a trinomial equation Amer. Math. Monthly 1939 422 425

[6] Noskov, G. A. The cancellation problem for a ring of polynomials Sibirsk. Mat. Zh. 1978

[7] Nowicki, Andrzej, Nagata, Masayoshi Rings of constants for 𝑘-derivations in 𝑘[𝑥₁,⋯,𝑥_{𝑛}] J. Math. Kyoto Univ. 1988 111 118

[8] Shannon, David, Sweedler, Moss Using Gröbner bases to determine algebra membership, split surjective algebra homomorphisms determine birational equivalence J. Symbolic Comput. 1988 267 273

[9] Shestakov, I. P. Quantization of Poisson superalgebras and the specialty of Jordan superalgebras of Poisson type Algebra i Logika 1993

[10] Umirbaev, Ualbaĭ U. Universal derivations and subalgebras of free algebras 1996 255 271

[11] Yu, Jie Tai On relations between Jacobians and minimal polynomials Linear Algebra Appl. 1995 19 29

[12] Zaks, Abraham Dedekind subrings of 𝑘[𝑥₁,⋯,𝑥_{𝑛}] are rings of polynomials Israel J. Math. 1971 285 289

Cité par Sources :