Random polynomials with prescribed Newton polytope
Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 49-108 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

The Newton polytope $P_f$ of a polynomial $f$ is well known to have a strong impact on its behavior. The Bernstein-Kouchnirenko Theorem asserts that even the number of simultaneous zeros in $(\mathbb {C}^*)^m$ of a system of $m$ polynomials depends on their Newton polytopes. In this article, we show that Newton polytopes also have a strong impact on the distribution of zeros and pointwise norms of polynomials, the basic theme being that Newton polytopes determine allowed and forbidden regions in $(\mathbb {C}^*)^m$ for these distributions. Our results are statistical and asymptotic in the degree of the polynomials. We equip the space of polynomials of degree $\leq p$ in $m$ complex variables with its usual SU$(m+1)$-invariant Gaussian probability measure and then consider the conditional measure induced on the subspace of polynomials with fixed Newton polytope $P$. We then determine the asymptotics of the conditional expectation $\mathbf {E}_{|N P}(Z_{f_1, \dots , f_k})$ of simultaneous zeros of $k$ polynomials with Newton polytope $NP$ as $N \to \infty$. When $P = \Sigma$, the unit simplex, it is clear that the expected zero distributions $\mathbf {E}_{|N\Sigma }(Z_{f_1, \dots , f_k})$ are uniform relative to the Fubini-Study form. For a convex polytope $P\subset p\Sigma$, we show that there is an allowed region on which $N^{-k}\mathbf {E}_{|N P}(Z_{f_1, \dots , f_k})$ is asymptotically uniform as the scaling factor $N\to \infty$. However, the zeros have an exotic distribution in the complementary forbidden region and when $k = m$ (the case of the Bernstein-Kouchnirenko Theorem), the expected percentage of simultaneous zeros in the forbidden region approaches 0 as $N\to \infty$.
DOI : 10.1090/S0894-0347-03-00437-5

Shiffman, Bernard  1   ; Zelditch, Steve  1

1 Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
@article{10_1090_S0894_0347_03_00437_5,
     author = {Shiffman, Bernard and Zelditch, Steve},
     title = {Random polynomials with prescribed {Newton} polytope},
     journal = {Journal of the American Mathematical Society},
     pages = {49--108},
     year = {2004},
     volume = {17},
     number = {1},
     doi = {10.1090/S0894-0347-03-00437-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00437-5/}
}
TY  - JOUR
AU  - Shiffman, Bernard
AU  - Zelditch, Steve
TI  - Random polynomials with prescribed Newton polytope
JO  - Journal of the American Mathematical Society
PY  - 2004
SP  - 49
EP  - 108
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00437-5/
DO  - 10.1090/S0894-0347-03-00437-5
ID  - 10_1090_S0894_0347_03_00437_5
ER  - 
%0 Journal Article
%A Shiffman, Bernard
%A Zelditch, Steve
%T Random polynomials with prescribed Newton polytope
%J Journal of the American Mathematical Society
%D 2004
%P 49-108
%V 17
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00437-5/
%R 10.1090/S0894-0347-03-00437-5
%F 10_1090_S0894_0347_03_00437_5
Shiffman, Bernard; Zelditch, Steve. Random polynomials with prescribed Newton polytope. Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 49-108. doi: 10.1090/S0894-0347-03-00437-5

[1] Agmon, Shmuel Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of 𝑁-body Schrödinger operators 1982 118

[2] Arnol′D, V. I., Guseĭn-Zade, S. M., Varchenko, A. N. Singularities of differentiable maps. Vol. II 1988

[3] Atiyah, M. F. Angular momentum, convex polyhedra and algebraic geometry Proc. Edinburgh Math. Soc. (2) 1983 121 133

[4] Barvinok, Alexander, Pommersheim, James E. An algorithmic theory of lattice points in polyhedra 1999 91 147

[5] Bedford, Eric, Taylor, B. A. A new capacity for plurisubharmonic functions Acta Math. 1982 1 40

[6] Bernstein, D. N. The number of roots of a system of equations Funkcional. Anal. i Priložen. 1975 1 4

[7] Bleher, Pavel, Shiffman, Bernard, Zelditch, Steve Universality and scaling of correlations between zeros on complex manifolds Invent. Math. 2000 351 395

[8] Brion, Michel, Vergne, Michèle Lattice points in simple polytopes J. Amer. Math. Soc. 1997 371 392

[9] Brion, Michel, Vergne, Michèle Residue formulae, vector partition functions and lattice points in rational polytopes J. Amer. Math. Soc. 1997 797 833

[10] Brion, Michel, Vergne, Michèle An equivariant Riemann-Roch theorem for complete, simplicial toric varieties J. Reine Angew. Math. 1997 67 92

[11] Delzant, Thomas Hamiltoniens périodiques et images convexes de l’application moment Bull. Soc. Math. France 1988 315 339

[12] Ehrhart, E. Sur un problème de géométrie diophantienne linéaire. I. Polyèdres et réseaux J. Reine Angew. Math. 1967 1 29

[13] Fan, Xian Ling The necessary and sufficient conditions for Lipschitz local homeomorphism Chinese Ann. Math. Ser. B 1992 40 45

[14] Federer, Herbert Geometric measure theory 1969

[15] Forsberg, Mikael, Passare, Mikael, Tsikh, August Laurent determinants and arrangements of hyperplane amoebas Adv. Math. 2000 45 70

[16] Fulton, William Introduction to toric varieties 1993

[17] Gel′Fand, I. M., Kapranov, M. M., Zelevinsky, A. V. Discriminants, resultants, and multidimensional determinants 1994

[18] Guillemin, Victor Riemann-Roch for toric orbifolds J. Differential Geom. 1997 53 73

[19] Hörmander, Lars The analysis of linear partial differential operators. I 1983

[20] Huber, Birkett, Sturmfels, Bernd A polyhedral method for solving sparse polynomial systems Math. Comp. 1995 1541 1555

[21] Pukhlikov, A. V., Khovanskiĭ, A. G. The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes Algebra i Analiz 1992 188 216

[22] Klimek, Maciej Pluripotential theory 1991

[23] Kouchnirenko, A. G. Polyèdres de Newton et nombres de Milnor Invent. Math. 1976 1 31

[24] Mikhalkin, G. Real algebraic curves, the moment map and amoebas Ann. of Math. (2) 2000 309 326

[25] Rojas, J. Maurice On the average number of real roots of certain random sparse polynomial systems 1996 689 699

[26] Shabat, B. V. Distribution of values of holomorphic mappings 1985

[27] Shiffman, Bernard, Zelditch, Steve Distribution of zeros of random and quantum chaotic sections of positive line bundles Comm. Math. Phys. 1999 661 683

[28] Sturmfels, Bernd On the number of real roots of a sparse polynomial system 1994 137 143

[29] Verschelde, Jan Toric Newton method for polynomial homotopies J. Symbolic Comput. 2000 777 793

Cité par Sources :