Shiffman, Bernard  1 ; Zelditch, Steve  1
@article{10_1090_S0894_0347_03_00437_5,
author = {Shiffman, Bernard and Zelditch, Steve},
title = {Random polynomials with prescribed {Newton} polytope},
journal = {Journal of the American Mathematical Society},
pages = {49--108},
year = {2004},
volume = {17},
number = {1},
doi = {10.1090/S0894-0347-03-00437-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00437-5/}
}
TY - JOUR AU - Shiffman, Bernard AU - Zelditch, Steve TI - Random polynomials with prescribed Newton polytope JO - Journal of the American Mathematical Society PY - 2004 SP - 49 EP - 108 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00437-5/ DO - 10.1090/S0894-0347-03-00437-5 ID - 10_1090_S0894_0347_03_00437_5 ER -
%0 Journal Article %A Shiffman, Bernard %A Zelditch, Steve %T Random polynomials with prescribed Newton polytope %J Journal of the American Mathematical Society %D 2004 %P 49-108 %V 17 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00437-5/ %R 10.1090/S0894-0347-03-00437-5 %F 10_1090_S0894_0347_03_00437_5
Shiffman, Bernard; Zelditch, Steve. Random polynomials with prescribed Newton polytope. Journal of the American Mathematical Society, Tome 17 (2004) no. 1, pp. 49-108. doi: 10.1090/S0894-0347-03-00437-5
[1] Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of 𝑁-body Schrödinger operators 1982 118
[2] , , Singularities of differentiable maps. Vol. II 1988
[3] Angular momentum, convex polyhedra and algebraic geometry Proc. Edinburgh Math. Soc. (2) 1983 121 133
[4] , An algorithmic theory of lattice points in polyhedra 1999 91 147
[5] , A new capacity for plurisubharmonic functions Acta Math. 1982 1 40
[6] The number of roots of a system of equations Funkcional. Anal. i Priložen. 1975 1 4
[7] , , Universality and scaling of correlations between zeros on complex manifolds Invent. Math. 2000 351 395
[8] , Lattice points in simple polytopes J. Amer. Math. Soc. 1997 371 392
[9] , Residue formulae, vector partition functions and lattice points in rational polytopes J. Amer. Math. Soc. 1997 797 833
[10] , An equivariant Riemann-Roch theorem for complete, simplicial toric varieties J. Reine Angew. Math. 1997 67 92
[11] Hamiltoniens périodiques et images convexes de l’application moment Bull. Soc. Math. France 1988 315 339
[12] Sur un problème de géométrie diophantienne linéaire. I. Polyèdres et réseaux J. Reine Angew. Math. 1967 1 29
[13] The necessary and sufficient conditions for Lipschitz local homeomorphism Chinese Ann. Math. Ser. B 1992 40 45
[14] Geometric measure theory 1969
[15] , , Laurent determinants and arrangements of hyperplane amoebas Adv. Math. 2000 45 70
[16] Introduction to toric varieties 1993
[17] , , Discriminants, resultants, and multidimensional determinants 1994
[18] Riemann-Roch for toric orbifolds J. Differential Geom. 1997 53 73
[19] The analysis of linear partial differential operators. I 1983
[20] , A polyhedral method for solving sparse polynomial systems Math. Comp. 1995 1541 1555
[21] , The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes Algebra i Analiz 1992 188 216
[22] Pluripotential theory 1991
[23] Polyèdres de Newton et nombres de Milnor Invent. Math. 1976 1 31
[24] Real algebraic curves, the moment map and amoebas Ann. of Math. (2) 2000 309 326
[25] On the average number of real roots of certain random sparse polynomial systems 1996 689 699
[26] Distribution of values of holomorphic mappings 1985
[27] , Distribution of zeros of random and quantum chaotic sections of positive line bundles Comm. Math. Phys. 1999 661 683
[28] On the number of real roots of a sparse polynomial system 1994 137 143
[29] Toric Newton method for polynomial homotopies J. Symbolic Comput. 2000 777 793
Cité par Sources :