Oort’s conjecture for 𝐴_{𝑔}⊗ℂ
Journal of the American Mathematical Society, Tome 16 (2003) no. 4, pp. 887-900

Voir la notice de l'article provenant de la source American Mathematical Society

We prove the conjecture of Oort that a compact subvariety of the moduli space of principally polarized Abelian varieties of genus $g$ has codimension strictly greater than $g$, in characteristic zero, for $g \geq 3$.
DOI : 10.1090/S0894-0347-03-00431-4

Keel, Sean 1 ; Sadun, Lorenzo 2

1 Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
2 Department of Mathematics, University of Texas at Austin, Austin, Texas, 78712
@article{10_1090_S0894_0347_03_00431_4,
     author = {Keel, Sean and Sadun, Lorenzo},
     title = {Oort\^a€™s conjecture for {\dh}{\textasciiacute}_{{\dh}‘”}\^aŠ—\^a„‚},
     journal = {Journal of the American Mathematical Society},
     pages = {887--900},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2003},
     doi = {10.1090/S0894-0347-03-00431-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00431-4/}
}
TY  - JOUR
AU  - Keel, Sean
AU  - Sadun, Lorenzo
TI  - Oort’s conjecture for 𝐴_{𝑔}⊗ℂ
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 887
EP  - 900
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00431-4/
DO  - 10.1090/S0894-0347-03-00431-4
ID  - 10_1090_S0894_0347_03_00431_4
ER  - 
%0 Journal Article
%A Keel, Sean
%A Sadun, Lorenzo
%T Oort’s conjecture for 𝐴_{𝑔}⊗ℂ
%J Journal of the American Mathematical Society
%D 2003
%P 887-900
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00431-4/
%R 10.1090/S0894-0347-03-00431-4
%F 10_1090_S0894_0347_03_00431_4
Keel, Sean; Sadun, Lorenzo. Oort’s conjecture for 𝐴_{𝑔}⊗ℂ. Journal of the American Mathematical Society, Tome 16 (2003) no. 4, pp. 887-900. doi: 10.1090/S0894-0347-03-00431-4

[1] Brã¶Cker, Theodor, Tom Dieck, Tammo Representations of compact Lie groups 1985

[2] Bott, Raoul, Tu, Loring W. Differential forms in algebraic topology 1982

[3] Colombo, E., Pirola, G. P. Some density results for curves with nonsimple Jacobians Math. Ann. 1990 161 178

[4] Diaz, Steven Complete subvarieties of the moduli space of smooth curves 1987 77 81

[5] Faber, Carel A conjectural description of the tautological ring of the moduli space of curves 1999 109 129

[6] Faber, Carel, Looijenga, Eduard Remarks on moduli of curves 1999 23 45

[7] Faber, C., Pandharipande, R. Logarithmic series and Hodge integrals in the tautological ring Michigan Math. J. 2000 215 252

[8] Fulton, William Intersection theory 1984

[9] Topics in transcendental algebraic geometry 1984

[10] Griffiths, Phillip, Harris, Joseph Principles of algebraic geometry 1978

[11] Van Der Geer, Gerard Cycles on the moduli space of abelian varieties 1999 65 89

[12] Van Der Geer, Gerard, Oort, Frans Moduli of abelian varieties: a short introduction and survey 1999 1 21

[13] Izadi, E. Density and completeness of subvarieties of moduli spaces of curves or abelian varieties Math. Ann. 1998 221 233

[14] Mumford, David Towards an enumerative geometry of the moduli space of curves 1983 271 328

[15] Kempf, George R. Complex abelian varieties and theta functions 1991

[16] Levi, Howard On the values assumed by polynomials Bull. Amer. Math. Soc. 1939 570 575

[17] Serre, Jean-Pierre Lie algebras and Lie groups 1965

[18] Zimmer, Robert J. Ergodic theory and semisimple groups 1984

Cité par Sources :