Conformal restriction: The chordal case
Journal of the American Mathematical Society, Tome 16 (2003) no. 4, pp. 917-955

Voir la notice de l'article provenant de la source American Mathematical Society

We characterize and describe all random subsets $K$ of a given simply connected planar domain (the upper half-plane ${\mathbb H}$, say) which satisfy the “conformal restriction” property, i.e., $K$ connects two fixed boundary points ($0$ and $\infty$, say) and the law of $K$ conditioned to remain in a simply connected open subset $H$ of ${\mathbb H}$ is identical to that of $\Phi (K)$, where $\Phi$ is a conformal map from ${\mathbb H}$ onto $H$ with $\Phi (0)=0$ and $\Phi (\infty )=\infty$. The construction of this family relies on the stochastic Loewner evolution processes with parameter $\kappa \le 8/3$ and on their distortion under conformal maps. We show in particular that SLE$_{8/3}$ is the only random simple curve satisfying conformal restriction and we relate it to the outer boundaries of planar Brownian motion and SLE$_6$.
DOI : 10.1090/S0894-0347-03-00430-2

Lawler, Gregory 1 ; Schramm, Oded 2 ; Werner, Wendelin 3

1 Department of Mathematics, 310 Malott Hall, Cornell University, Ithaca, New York 14853-4201
2 Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052
3 Département de Mathématiques, Bât. 425, Université Paris-Sud, 91405 ORSAY cedex, France
@article{10_1090_S0894_0347_03_00430_2,
     author = {Lawler, Gregory and Schramm, Oded and Werner, Wendelin},
     title = {Conformal restriction: {The} chordal case},
     journal = {Journal of the American Mathematical Society},
     pages = {917--955},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2003},
     doi = {10.1090/S0894-0347-03-00430-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00430-2/}
}
TY  - JOUR
AU  - Lawler, Gregory
AU  - Schramm, Oded
AU  - Werner, Wendelin
TI  - Conformal restriction: The chordal case
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 917
EP  - 955
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00430-2/
DO  - 10.1090/S0894-0347-03-00430-2
ID  - 10_1090_S0894_0347_03_00430_2
ER  - 
%0 Journal Article
%A Lawler, Gregory
%A Schramm, Oded
%A Werner, Wendelin
%T Conformal restriction: The chordal case
%J Journal of the American Mathematical Society
%D 2003
%P 917-955
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00430-2/
%R 10.1090/S0894-0347-03-00430-2
%F 10_1090_S0894_0347_03_00430_2
Lawler, Gregory; Schramm, Oded; Werner, Wendelin. Conformal restriction: The chordal case. Journal of the American Mathematical Society, Tome 16 (2003) no. 4, pp. 917-955. doi: 10.1090/S0894-0347-03-00430-2

[1] Ahlfors, Lars V. Conformal invariants: topics in geometric function theory 1973

[2] Belavin, A. A., Polyakov, A. M., Zamolodchikov, A. B. Infinite conformal symmetry of critical fluctuations in two dimensions J. Statist. Phys. 1984 763 774

[3] Belavin, A. A., Polyakov, A. M., Zamolodchikov, A. B. Infinite conformal symmetry in two-dimensional quantum field theory Nuclear Phys. B 1984 333 380

[4] Burdzy, K. Multidimensional Brownian excursions and potential theory 1987

[5] Cardy, John L. Critical percolation in finite geometries J. Phys. A 1992

[6] Duplantier, Bertrand Random walks and quantum gravity in two dimensions Phys. Rev. Lett. 1998 5489 5492

[7] Duplantier, B., Saleur, H. Exact surface and wedge exponents for polymers in two dimensions Phys. Rev. Lett. 1986 3179 3182

[8] Duren, Peter L. Univalent functions 1983

[9] Lawler, Gregory F., Schramm, Oded, Werner, Wendelin Values of Brownian intersection exponents. I. Half-plane exponents Acta Math. 2001 237 273

[10] Lawler, Gregory F., Schramm, Oded, Werner, Wendelin Values of Brownian intersection exponents. I. Half-plane exponents Acta Math. 2001 237 273

[11] Lawler, Gregory F., Schramm, Oded, Werner, Wendelin Values of Brownian intersection exponents. III. Two-sided exponents Ann. Inst. H. Poincaré Probab. Statist. 2002 109 123

[12] Lawler, Gregory F., Schramm, Oded, Werner, Wendelin Sharp estimates for Brownian non-intersection probabilities 2002 113 131

[13] Lawler, Gregory F., Schramm, Oded, Werner, Wendelin One-arm exponent for critical 2D percolation Electron. J. Probab. 2002

[14] Lawler, Gregory F., Werner, Wendelin Universality for conformally invariant intersection exponents J. Eur. Math. Soc. (JEMS) 2000 291 328

[15] Mandelbrot, Benoit B. The fractal geometry of nature 1982

[16] Pommerenke, Christian Univalent functions 1975 376

[17] Pommerenke, Ch. Boundary behaviour of conformal maps 1992

[18] Revuz, Daniel, Yor, Marc Continuous martingales and Brownian motion 1994

[19] Saleur, H., Duplantier, B. Exact determination of the percolation hull exponent in two dimensions Phys. Rev. Lett. 1987 2325 2328

[20] Schramm, Oded Scaling limits of loop-erased random walks and uniform spanning trees Israel J. Math. 2000 221 288

[21] Schramm, Oded A percolation formula Electron. Comm. Probab. 2001 115 120

[22] Smirnov, Stanislav Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits C. R. Acad. Sci. Paris Sér. I Math. 2001 239 244

[23] Varadhan, S. R. S., Williams, R. J. Brownian motion in a wedge with oblique reflection Comm. Pure Appl. Math. 1985 405 443

[24] Werner, Wendelin Critical exponents, conformal invariance and planar Brownian motion 2001 87 103

Cité par Sources :