Quasianalytic Denjoy-Carleman classes and o-minimality
Journal of the American Mathematical Society, Tome 16 (2003) no. 4, pp. 751-777

Voir la notice de l'article provenant de la source American Mathematical Society

We show that the expansion of the real field generated by the functions of a quasianalytic Denjoy-Carleman class is model complete and o-minimal, provided that the class satisfies certain closure conditions. Some of these structures do not admit analytic cell decomposition, and they show that there is no largest o-minimal expansion of the real field.
DOI : 10.1090/S0894-0347-03-00427-2

Rolin, J.-P. 1 ; Speissegger, P. 2 ; Wilkie, A. 3

1 Laboratoire de Topologie, Université de Bourgogne, 9 Av. Alain Savary, B.P. 47870, 21078 Dijon Cedex, France
2 Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, Wisconsin 53706
3 Mathematical Institute, University of Oxford, 24-29 St. Giles’, Oxford OX1 3LB, United Kingdom
@article{10_1090_S0894_0347_03_00427_2,
     author = {Rolin, J.-P. and Speissegger, P. and Wilkie, A.},
     title = {Quasianalytic {Denjoy-Carleman} classes and o-minimality},
     journal = {Journal of the American Mathematical Society},
     pages = {751--777},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2003},
     doi = {10.1090/S0894-0347-03-00427-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00427-2/}
}
TY  - JOUR
AU  - Rolin, J.-P.
AU  - Speissegger, P.
AU  - Wilkie, A.
TI  - Quasianalytic Denjoy-Carleman classes and o-minimality
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 751
EP  - 777
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00427-2/
DO  - 10.1090/S0894-0347-03-00427-2
ID  - 10_1090_S0894_0347_03_00427_2
ER  - 
%0 Journal Article
%A Rolin, J.-P.
%A Speissegger, P.
%A Wilkie, A.
%T Quasianalytic Denjoy-Carleman classes and o-minimality
%J Journal of the American Mathematical Society
%D 2003
%P 751-777
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00427-2/
%R 10.1090/S0894-0347-03-00427-2
%F 10_1090_S0894_0347_03_00427_2
Rolin, J.-P.; Speissegger, P.; Wilkie, A. Quasianalytic Denjoy-Carleman classes and o-minimality. Journal of the American Mathematical Society, Tome 16 (2003) no. 4, pp. 751-777. doi: 10.1090/S0894-0347-03-00427-2

[1] Abhyankar, Shreeram S., Moh, Tzuong Tsieng Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II J. Reine Angew. Math. 1973

[2] Abhyankar, Shreeram S., Moh, Tzuong Tsieng Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II J. Reine Angew. Math. 1973

[3] Bierstone, Edward, Milman, Pierre D. Semianalytic and subanalytic sets Inst. Hautes Études Sci. Publ. Math. 1988 5 42

[4] Bierstone, Edward, Milman, Pierre D. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant Invent. Math. 1997 207 302

[5] Childress, C. L. Weierstrass division in quasianalytic local rings Canadian J. Math. 1976 938 953

[6] Van Den Dries, Lou o-minimal structures and real analytic geometry 1999 105 152

[7] Van Den Dries, Lou, Miller, Chris Geometric categories and o-minimal structures Duke Math. J. 1996 497 540

[8] Van Den Dries, Lou, Speissegger, Patrick The real field with convergent generalized power series Trans. Amer. Math. Soc. 1998 4377 4421

[9] Van Den Dries, Lou, Speissegger, Patrick The field of reals with multisummable series and the exponential function Proc. London Math. Soc. (3) 2000 513 565

[10] Gabrielov, Andrei Complements of subanalytic sets and existential formulas for analytic functions Invent. Math. 1996 1 12

[11] Katznelson, Yitzhak An introduction to harmonic analysis 1968

[12] Komatsu, Hikosaburo The implicit function theorem for ultradifferentiable mappings Proc. Japan Acad. Ser. A Math. Sci. 1979 69 72

[13] Lion, J.-M., Rolin, J.-P. Théorème de préparation pour les fonctions logarithmico-exponentielles Ann. Inst. Fourier (Grenoble) 1997 859 884

[14] Venkatarayudu, T. The 7-15 problem Proc. Indian Acad. Sci., Sect. A. 1939 531

[15] Miller, Chris Expansions of the real field with power functions Ann. Pure Appl. Logic 1994 79 94

[16] Miller, Chris Infinite differentiability in polynomially bounded o-minimal structures Proc. Amer. Math. Soc. 1995 2551 2555

[17] Parusiå„Ski, Adam Lipschitz stratification of subanalytic sets Ann. Sci. École Norm. Sup. (4) 1994 661 696

[18] Roumieu, Charles Ultra-distributions définies sur 𝑅ⁿ et sur certaines classes de variétés différentiables J. Analyse Math. 1962/63 153 192

[19] Rudin, Walter Real and complex analysis 1987

Cité par Sources :