Infinitely many hyperbolic 3-manifolds which contain no Reebless foliation
Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 639-679 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

We investigate group actions on simply-connected (second countable but not necessarily Hausdorff) 1-manifolds and describe an infinite family of closed hyperbolic 3-manifolds whose fundamental groups do not act nontrivially on such 1-manifolds. As a corollary we conclude that these 3-manifolds contain no Reebless foliation. In fact, these arguments extend to actions on oriented $\mathbb R$-order trees and hence these 3-manifolds contain no transversely oriented essential lamination; in particular, they are non-Haken.
DOI : 10.1090/S0894-0347-03-00426-0

Roberts, R.  1   ; Shareshian, J.  1   ; Stein, M.  2

1 Department of Mathematics, Washington University, St Louis, Missouri 63130
2 Department of Mathematics, Trinity College, Hartford, Connecticut 06106
@article{10_1090_S0894_0347_03_00426_0,
     author = {Roberts, R. and Shareshian, J. and Stein, M.},
     title = {Infinitely many hyperbolic 3-manifolds which contain no {Reebless} foliation},
     journal = {Journal of the American Mathematical Society},
     pages = {639--679},
     year = {2003},
     volume = {16},
     number = {3},
     doi = {10.1090/S0894-0347-03-00426-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00426-0/}
}
TY  - JOUR
AU  - Roberts, R.
AU  - Shareshian, J.
AU  - Stein, M.
TI  - Infinitely many hyperbolic 3-manifolds which contain no Reebless foliation
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 639
EP  - 679
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00426-0/
DO  - 10.1090/S0894-0347-03-00426-0
ID  - 10_1090_S0894_0347_03_00426_0
ER  - 
%0 Journal Article
%A Roberts, R.
%A Shareshian, J.
%A Stein, M.
%T Infinitely many hyperbolic 3-manifolds which contain no Reebless foliation
%J Journal of the American Mathematical Society
%D 2003
%P 639-679
%V 16
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00426-0/
%R 10.1090/S0894-0347-03-00426-0
%F 10_1090_S0894_0347_03_00426_0
Roberts, R.; Shareshian, J.; Stein, M. Infinitely many hyperbolic 3-manifolds which contain no Reebless foliation. Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 639-679. doi: 10.1090/S0894-0347-03-00426-0

[1] Agol, Ian Bounds on exceptional Dehn filling Geom. Topol. 2000 431 449

[2] Baker, Mark D. Covers of Dehn fillings on once-punctured torus bundles Proc. Amer. Math. Soc. 1989 747 754

[3] Baker, Mark D. Covers of Dehn fillings on once-punctured torus bundles. II Proc. Amer. Math. Soc. 1990 1099 1108

[4] Barbot, Thierry Actions de groupes sur les 1-variétés non séparées et feuilletages de codimension un Ann. Fac. Sci. Toulouse Math. (6) 1998 559 597

[5] Berberian, Sterling K. Fundamentals of real analysis 1999

[6] Betley, S., Przytycki, J. H., Żukowski, T. Hyperbolic structures on Dehn filling of some punctured-torus bundles over 𝑆¹ Kobe J. Math. 1987 117 147

[7] Bleiler, Steven A., Hodgson, Craig D. Spherical space forms and Dehn filling Topology 1996 809 833

[8] Bowditch, B. H., Maclachlan, C., Reid, A. W. Arithmetic hyperbolic surface bundles Math. Ann. 1995 31 60

[9] Brittenham, Mark Essential laminations in Seifert-fibered spaces Topology 1993 61 85

[10] Brittenham, Mark, Naimi, Ramin, Roberts, Rachel Graph manifolds and taut foliations J. Differential Geom. 1997 446 470

[11] Cooper, Daryl, Hodgson, Craig D., Kerckhoff, Steven P. Three-dimensional orbifolds and cone-manifolds 2000

[12] Culler, M., Jaco, W., Rubinstein, H. Incompressible surfaces in once-punctured torus bundles Proc. London Math. Soc. (3) 1982 385 419

[13] Culler, Marc, Morgan, John W. Group actions on 𝑅-trees Proc. London Math. Soc. (3) 1987 571 604

[14] Culler, Marc, Vogtmann, Karen A group-theoretic criterion for property 𝐹𝐴 Proc. Amer. Math. Soc. 1996 677 683

[15] Floyd, W., Hatcher, A. Incompressible surfaces in punctured-torus bundles Topology Appl. 1982 263 282

[16] Gabai, David Taut foliations of 3-manifolds and suspensions of 𝑆¹ Ann. Inst. Fourier (Grenoble) 1992 193 208

[17] Gabai, David Quasi-minimal semi-Euclidean laminations in 3-manifolds 1998 195 242

[18] Gabai, David, Kazez, William H. Order trees and laminations of the plane Math. Res. Lett. 1997 603 616

[19] Gabai, David, Kazez, William H. Group negative curvature for 3-manifolds with genuine laminations Geom. Topol. 1998 65 77

[20] Gabai, David, Oertel, Ulrich Essential laminations in 3-manifolds Ann. of Math. (2) 1989 41 73

[21] Goodman, Sue E. Closed leaves in foliations of codimension one Comment. Math. Helv. 1975 383 388

[22] Maclane, Saunders, Schilling, O. F. G. Infinite number fields with Noether ideal theories Amer. J. Math. 1939 771 782

[23] Hatcher, Allen Some examples of essential laminations in 3-manifolds Ann. Inst. Fourier (Grenoble) 1992 313 325

[24] Hodgson, Craig D., Meyerhoff, G. Robert, Weeks, Jeffrey R. Surgeries on the Whitehead link yield geometrically similar manifolds 1992 195 206

[25] Jørgensen, Troels Compact 3-manifolds of constant negative curvature fibering over the circle Ann. of Math. (2) 1977 61 72

[26] Lackenby, Marc Word hyperbolic Dehn surgery Invent. Math. 2000 243 282

[27] Masters, Joseph D. Virtual homology of surgered torus bundles Pacific J. Math. 2000 205 223

[28] Mccullough, Darryl Automorphisms of punctured-surface bundles 1987 179 209

[29] Morgan, John W. Λ-trees and their applications Bull. Amer. Math. Soc. (N.S.) 1992 87 112

[30] Morgan, John W., Shalen, Peter B. Degenerations of hyperbolic structures. II. Measured laminations in 3-manifolds Ann. of Math. (2) 1988 403 456

[31] Novikov, S. P. The topology of foliations Trudy Moskov. Mat. Obšč. 1965 248 278

[32] Neumann, Walter D., Reid, Alan W. Arithmetic of hyperbolic manifolds 1992 273 310

[33] Palmeira, Carlos Frederico Borges Open manifolds foliated by planes Ann. of Math. (2) 1978 109 131

[34] Paulin, Frédéric Actions de groupes sur les arbres Astérisque 1997

[35] Przytycki, Józef H. Nonorientable, incompressible surfaces of genus 3 in 𝑀_{𝜑}(𝜆\over𝜇) manifolds Collect. Math. 1983 37 79

[36] Przytycki, Józef H. Incompressibility of surfaces with four boundary components after Dehn surgery Demonstratio Math. 1984 119 126

[37] Reid, Alan W. A non-Haken hyperbolic 3-manifold covered by a surface bundle Pacific J. Math. 1995 163 182

[38] Reid, Alan W., Wang, Shicheng Non-Haken 3-manifolds are not large with respect to mappings of non-zero degree Comm. Anal. Geom. 1999 105 132

[39] Roberts, Rachel, Stein, Melanie Group actions on order trees Topology Appl. 2001 175 201

[40] Rolfsen, Dale Knots and links 1976

[41] Schweitzer, Paul A. Counterexamples to the Seifert conjecture and opening closed leaves of foliations Ann. of Math. (2) 1974 386 400

[42] Shalen, Peter B. Dendrology of groups: an introduction 1987 265 319

[43] Shalen, Peter B. Dendrology and its applications 1991 543 616

[44] Serre, Jean-Pierre Trees 1980

[45] Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry Bull. Amer. Math. Soc. (N.S.) 1982 357 381

[46] Thurston, William P. On the geometry and dynamics of diffeomorphisms of surfaces Bull. Amer. Math. Soc. (N.S.) 1988 417 431

Cité par Sources :