Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram
Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 581-603

Voir la notice de l'article provenant de la source American Mathematical Society

The Schur process is a time-dependent analog of the Schur measure on partitions studied by A. Okounkov in Infinite wedge and random partitions, Selecta Math., New Ser. 7 (2001), 57–81. Our first result is that the correlation functions of the Schur process are determinants with a kernel that has a nice contour integral representation in terms of the parameters of the process. This general result is then applied to a particular specialization of the Schur process, namely to random 3-dimensional Young diagrams. The local geometry of a large random 3-dimensional diagram is described in terms of a determinantal point process on a 2-dimensional lattice with the incomplete beta function kernel (which generalizes the discrete sine kernel). A brief discussion of the universality of this answer concludes the paper.
DOI : 10.1090/S0894-0347-03-00425-9

Okounkov, Andrei 1 ; Reshetikhin, Nikolai 1

1 Department of Mathematics, University of California at Berkeley, Evans Hall #3840, Berkeley, California 94720-3840
@article{10_1090_S0894_0347_03_00425_9,
     author = {Okounkov, Andrei and Reshetikhin, Nikolai},
     title = {Correlation function of {Schur} process with application to local geometry of a random 3-dimensional {Young} diagram},
     journal = {Journal of the American Mathematical Society},
     pages = {581--603},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2003},
     doi = {10.1090/S0894-0347-03-00425-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00425-9/}
}
TY  - JOUR
AU  - Okounkov, Andrei
AU  - Reshetikhin, Nikolai
TI  - Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 581
EP  - 603
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00425-9/
DO  - 10.1090/S0894-0347-03-00425-9
ID  - 10_1090_S0894_0347_03_00425_9
ER  - 
%0 Journal Article
%A Okounkov, Andrei
%A Reshetikhin, Nikolai
%T Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram
%J Journal of the American Mathematical Society
%D 2003
%P 581-603
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00425-9/
%R 10.1090/S0894-0347-03-00425-9
%F 10_1090_S0894_0347_03_00425_9
Okounkov, Andrei; Reshetikhin, Nikolai. Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 581-603. doi: 10.1090/S0894-0347-03-00425-9

[1] Borodin, Alexei, Okounkov, Andrei, Olshanski, Grigori Asymptotics of Plancherel measures for symmetric groups J. Amer. Math. Soc. 2000 481 515

[2] Burton, Robert, Pemantle, Robin Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances Ann. Probab. 1993 1329 1371

[3] Cerf, Raphaã«L, Kenyon, Richard The low-temperature expansion of the Wulff crystal in the 3D Ising model Comm. Math. Phys. 2001 147 179

[4] Cohn, Henry, Elkies, Noam, Propp, James Local statistics for random domino tilings of the Aztec diamond Duke Math. J. 1996 117 166

[5] Cohn, Henry, Kenyon, Richard, Propp, James A variational principle for domino tilings J. Amer. Math. Soc. 2001 297 346

[6] Faddeev, L. D., Kashaev, R. M. Quantum dilogarithm Modern Phys. Lett. A 1994 427 434

[7] Johansson, Kurt Discrete orthogonal polynomial ensembles and the Plancherel measure Ann. of Math. (2) 2001 259 296

[8] Johansson, Kurt Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices Comm. Math. Phys. 2001 683 705

[9] Kac, Victor G. Infinite-dimensional Lie algebras 1985

[10] Karlin, Samuel, Mcgregor, James Coincidence probabilities Pacific J. Math. 1959 1141 1164

[11] Kenyon, Richard Local statistics of lattice dimers Ann. Inst. H. Poincaré Probab. Statist. 1997 591 618

[12] Kenyon, Richard The planar dimer model with boundary: a survey 2000 307 328

[13] Macdonald, I. G. Symmetric functions and Hall polynomials 1995

[14] Okounkov, Andrei Infinite wedge and random partitions Selecta Math. (N.S.) 2001 57 81

Cité par Sources :