Resultants and Chow forms via exterior syzygies
Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 537-579

Voir la notice de l'article provenant de la source American Mathematical Society

Given a sheaf on a projective space ${\mathbf P}^n$, we define a sequence of canonical and effectively computable Chow complexes on the Grassmannians of planes in ${\mathbf P}^n$, generalizing the well-known Beilinson monad on ${\mathbf P}^n$. If the sheaf has dimension $k$, then the Chow form of the associated $k$-cycle is the determinant of the Chow complex on the Grassmannian of planes of codimension $k+1$. Using the theory of vector bundles and the canonical nature of the complexes, we are able to give explicit determinantal and Pfaffian formulas for resultants in some cases where no polynomial formulas were known. For example, the Horrocks–Mumford bundle gives rise to a polynomial formula for the resultant of five homogeneous forms of degree eight in five variables.
DOI : 10.1090/S0894-0347-03-00423-5

Eisenbud, David 1 ; Schreyer, Frank-Olaf 2 ; Weyman, Jerzy 3

1 Department of Mathematics, University of California, Berkeley, Berkeley, California 94720
2 Mathematik und Informatik, Geb. 27, Universität des Saarlandes, D-66123 Saarbrücken, Germany
3 Department of Mathematics, Northeastern University, Boston, Massachusetts 02115
@article{10_1090_S0894_0347_03_00423_5,
     author = {Eisenbud, David and Schreyer, Frank-Olaf and Weyman, Jerzy},
     title = {Resultants and {Chow} forms via exterior syzygies},
     journal = {Journal of the American Mathematical Society},
     pages = {537--579},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2003},
     doi = {10.1090/S0894-0347-03-00423-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00423-5/}
}
TY  - JOUR
AU  - Eisenbud, David
AU  - Schreyer, Frank-Olaf
AU  - Weyman, Jerzy
TI  - Resultants and Chow forms via exterior syzygies
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 537
EP  - 579
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00423-5/
DO  - 10.1090/S0894-0347-03-00423-5
ID  - 10_1090_S0894_0347_03_00423_5
ER  - 
%0 Journal Article
%A Eisenbud, David
%A Schreyer, Frank-Olaf
%A Weyman, Jerzy
%T Resultants and Chow forms via exterior syzygies
%J Journal of the American Mathematical Society
%D 2003
%P 537-579
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00423-5/
%R 10.1090/S0894-0347-03-00423-5
%F 10_1090_S0894_0347_03_00423_5
Eisenbud, David; Schreyer, Frank-Olaf; Weyman, Jerzy. Resultants and Chow forms via exterior syzygies. Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 537-579. doi: 10.1090/S0894-0347-03-00423-5

[1] Green, John W. Harmonic functions in domains with multiple boundary points Amer. J. Math. 1939 609 632

[2] Bernå¡Teä­N, I. N., Gel′Fand, I. M., Gel′Fand, S. I. Algebraic vector bundles on 𝑃ⁿ and problems of linear algebra Funktsional. Anal. i Prilozhen. 1978 66 67

[3] Sundaram, S. Minakshi On non-linear partial differential equations of the hyperbolic type Proc. Indian Acad. Sci., Sect. A. 1939 495 503

[4] Buchweitz, Ragnar-Olaf, Eisenbud, David, Herzog, Jã¼Rgen Cohen-Macaulay modules on quadrics 1987 58 116

[5] Gontcharoff, M. Sur quelques séries d’interpolation généralisant celles de Newton et de Stirling Uchenye Zapiski Moskov. Gos. Univ. Matematika 1939 17 48

[6] Rosenblatt, Alfred Sur les points singuliers des équations différentielles C. R. Acad. Sci. Paris 1939 10 11

[7] Kantorovitch, L. The method of successive approximations for functional equations Acta Math. 1939 63 97

Cité par Sources :