Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type
Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 461-494

Voir la notice de l'article provenant de la source American Mathematical Society

We establish the existence and stability of multidimensional transonic shocks for the Euler equations for steady potential compressible fluids. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for the velocity, can be written as a second-order, nonlinear equation of mixed elliptic-hyperbolic type for the velocity potential. The transonic shock problem can be formulated into the following free boundary problem: The free boundary is the location of the transonic shock which divides the two regions of smooth flow, and the equation is hyperbolic in the upstream region where the smooth perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem. Our results indicate that there exists a unique solution of the free boundary problem such that the equation is always elliptic in the downstream region and the free boundary is smooth, provided that the hyperbolic phase is close to a uniform flow. We prove that the free boundary is stable under the steady perturbation of the hyperbolic phase. We also establish the existence and stability of multidimensional transonic shocks near spherical or circular transonic shocks.
DOI : 10.1090/S0894-0347-03-00422-3

Chen, Gui-Qiang 1 ; Feldman, Mikhail 2

1 Department of Mathematics, Northwestern University, Evanston, Illinois 60208-2730
2 Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
@article{10_1090_S0894_0347_03_00422_3,
     author = {Chen, Gui-Qiang and Feldman, Mikhail},
     title = {Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type},
     journal = {Journal of the American Mathematical Society},
     pages = {461--494},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2003},
     doi = {10.1090/S0894-0347-03-00422-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00422-3/}
}
TY  - JOUR
AU  - Chen, Gui-Qiang
AU  - Feldman, Mikhail
TI  - Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 461
EP  - 494
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00422-3/
DO  - 10.1090/S0894-0347-03-00422-3
ID  - 10_1090_S0894_0347_03_00422_3
ER  - 
%0 Journal Article
%A Chen, Gui-Qiang
%A Feldman, Mikhail
%T Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type
%J Journal of the American Mathematical Society
%D 2003
%P 461-494
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00422-3/
%R 10.1090/S0894-0347-03-00422-3
%F 10_1090_S0894_0347_03_00422_3
Chen, Gui-Qiang; Feldman, Mikhail. Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type. Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 461-494. doi: 10.1090/S0894-0347-03-00422-3

[1] Alt, H. W., Caffarelli, L. A. Existence and regularity for a minimum problem with free boundary J. Reine Angew. Math. 1981 105 144

[2] Alt, Hans Wilhelm, Caffarelli, Luis A., Friedman, Avner A free boundary problem for quasilinear elliptic equations Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1984 1 44

[3] Alt, Hans Wilhelm, Caffarelli, Luis A., Friedman, Avner Compressible flows of jets and cavities J. Differential Equations 1985 82 141

[4] Aubin, Thierry Some nonlinear problems in Riemannian geometry 1998

[5] Nakayama, Tadasi On Frobeniusean algebras. I Ann. of Math. (2) 1939 611 633

[6] Green, John W. Harmonic functions in domains with multiple boundary points Amer. J. Math. 1939 609 632

[7] Caffarelli, Luis A., Cabrã©, Xavier Fully nonlinear elliptic equations 1995

[8] ČAniä‡, SunäIca, Keyfitz, Barbara Lee, Lieberman, Gary M. A proof of existence of perturbed steady transonic shocks via a free boundary problem Comm. Pure Appl. Math. 2000 484 511

[9] Chen, Gui-Qiang, Glimm, James Global solutions to the compressible Euler equations with geometrical structure Comm. Math. Phys. 1996 153 193

[10] Chen, Shuxing Existence of stationary supersonic flows past a pointed body Arch. Ration. Mech. Anal. 2001 141 181

[11] Chen, Shuxing Asymptotic behaviour of supersonic flow past a convex combined wedge Chinese Ann. Math. Ser. B 1998 255 264

[12] Ward, Morgan Ring homomorphisms which are also lattice homomorphisms Amer. J. Math. 1939 783 787

[13] Greville, T. N. E. Some extensions of Mr. Beers’s method of interpolation Record. Amer. Inst. Actuar. 1945 188 193

[14] Dong, Guang Chang Nonlinear partial differential equations of second order 1991

[15] Maclane, Saunders, Schilling, O. F. G. Infinite number fields with Noether ideal theories Amer. J. Math. 1939 771 782

[16] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 1983

[17] Multidimensional hyperbolic problems and computations 1991

[18] Kenig, Carlos E. Harmonic analysis techniques for second order elliptic boundary value problems 1994

[19] Lax, Peter D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves 1973

[20] Li, Da Qian On a free boundary problem Chinese Ann. Math. 1980 351 358

[21] Lieberman, Gary M. Regularity of solutions of nonlinear elliptic boundary value problems J. Reine Angew. Math. 1986 1 13

[22] Lieberman, Gary M., Trudinger, Neil S. Nonlinear oblique boundary value problems for nonlinear elliptic equations Trans. Amer. Math. Soc. 1986 509 546

[23] Ivanov, V. I. A mathematical model of the Stokes soliton Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza 1999 174 180

[24] Langer, Rudolph E. The boundary problem of an ordinary linear differential system in the complex domain Trans. Amer. Math. Soc. 1939

[25] Maclane, Saunders Steinitz field towers for modular fields Trans. Amer. Math. Soc. 1939 23 45

[26] Morawetz, Cathleen S. Potential theory for regular and Mach reflection of a shock at a wedge Comm. Pure Appl. Math. 1994 593 624

[27] Schaeffer, David G. Supersonic flow past a nearly straight wedge Duke Math. J. 1976 637 670

[28] Hebroni, P. Sur les inverses des éléments dérivables dans un anneau abstrait C. R. Acad. Sci. Paris 1939 285 287

[29] Stein, Elias M. Singular integrals and differentiability properties of functions 1970

[30] Zhang, Yongqian Global existence of steady supersonic potential flow past a curved wedge with a piecewise smooth boundary SIAM J. Math. Anal. 1999 166 183

Cité par Sources :