Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋
Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 705-749

Voir la notice de l'article provenant de la source American Mathematical Society

The initial value problems for the Korteweg-de Vries (KdV) and modified KdV (mKdV) equations under periodic and decaying boundary conditions are considered. These initial value problems are shown to be globally well-posed in all $L^2$-based Sobolev spaces $H^s$ where local well-posedness is presently known, apart from the $H^{\frac {1}{4}} (\mathbb {R} )$ endpoint for mKdV and the $H^{-\frac {3}{4}}$ endpoint for KdV. The result for KdV relies on a new method for constructing almost conserved quantities using multilinear harmonic analysis and the available local-in-time theory. Miura’s transformation is used to show that global well-posedness of modified KdV is implied by global well-posedness of the standard KdV equation.
DOI : 10.1090/S0894-0347-03-00421-1

Colliander, J. 1 ; Keel, M. 2 ; Staffilani, G. 3, 4 ; Takaoka, H. 5, 6 ; Tao, T. 7

1 Department of Mathematics, University of Toronto, Toronto, ON Canada, M5S 3G3
2 School of Mathematics, University of Minnesota, Minneapolis, Minnesota, 55455
3 Department of Mathematics, Stanford University, Stanford, California 94305-2125
4 Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02138
5 Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
6 Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
7 Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095-1555
@article{10_1090_S0894_0347_03_00421_1,
     author = {Colliander, J. and Keel, M. and Staffilani, G. and Takaoka, H. and Tao, T.},
     title = {Sharp global well-posedness for {KdV} and modified {KdV} on \^a„ and {\dh}•‹},
     journal = {Journal of the American Mathematical Society},
     pages = {705--749},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2003},
     doi = {10.1090/S0894-0347-03-00421-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00421-1/}
}
TY  - JOUR
AU  - Colliander, J.
AU  - Keel, M.
AU  - Staffilani, G.
AU  - Takaoka, H.
AU  - Tao, T.
TI  - Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 705
EP  - 749
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00421-1/
DO  - 10.1090/S0894-0347-03-00421-1
ID  - 10_1090_S0894_0347_03_00421_1
ER  - 
%0 Journal Article
%A Colliander, J.
%A Keel, M.
%A Staffilani, G.
%A Takaoka, H.
%A Tao, T.
%T Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋
%J Journal of the American Mathematical Society
%D 2003
%P 705-749
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00421-1/
%R 10.1090/S0894-0347-03-00421-1
%F 10_1090_S0894_0347_03_00421_1
Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋. Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 705-749. doi: 10.1090/S0894-0347-03-00421-1

[1] Beals, Michael Self-spreading and strength of singularities for solutions to semilinear wave equations Ann. of Math. (2) 1983 187 214

[2] Birnir, Bjã¶Rn, Kenig, Carlos E., Ponce, Gustavo, Svanstedt, Nils, Vega, Luis On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations J. London Math. Soc. (2) 1996 551 559

[3] Birnir, Bjã¶Rn, Ponce, Gustavo, Svanstedt, Nils The local ill-posedness of the modified KdV equation Ann. Inst. H. Poincaré C Anal. Non Linéaire 1996 529 535

[4] Bona, J. L., Smith, R. The initial-value problem for the Korteweg-de Vries equation Philos. Trans. Roy. Soc. London Ser. A 1975 555 601

[5] Kantorovitch, L. The method of successive approximations for functional equations Acta Math. 1939 63 97

[6] Bourgain, Jean Approximation of solutions of the cubic nonlinear Schrödinger equations by finite-dimensional equations and nonsqueezing properties Internat. Math. Res. Notices 1994 79 88

[7] Bourgain, J. Aspects of long time behaviour of solutions of nonlinear Hamiltonian evolution equations Geom. Funct. Anal. 1995 105 140

[8] Bourgain, Jean On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE Internat. Math. Res. Notices 1996 277 304

[9] Bourgain, J. Periodic Korteweg de Vries equation with measures as initial data Selecta Math. (N.S.) 1997 115 159

[10] Bourgain, J. Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity Internat. Math. Res. Notices 1998 253 283

[11] Carleson, Lennart, Sjã¶Lin, Per Oscillatory integrals and a multiplier problem for the disc Studia Math. 1972

[12] Cohen, Amy Existence and regularity for solutions of the Korteweg-de Vries equation Arch. Rational Mech. Anal. 1979 143 175

[13] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T. Global well-posedness for KdV in Sobolev spaces of negative index Electron. J. Differential Equations 2001

[14] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T. Global well-posedness for Schrödinger equations with derivative SIAM J. Math. Anal. 2001 649 669

[15] Colliander, J., Staffilani, G., Takaoka, H. Global wellposedness for KdV below 𝐿² Math. Res. Lett. 1999 755 778

[16] Fefferman, Charles A note on spherical summation multipliers Israel J. Math. 1973 44 52

[17] Fonseca, German, Linares, Felipe, Ponce, Gustavo Global well-posedness for the modified Korteweg-de Vries equation Comm. Partial Differential Equations 1999 683 705

[18] Ginibre, J. An introduction to nonlinear Schrödinger equations 1997 85 133

[19] Ginibre, J., Tsutsumi, Y., Velo, G. Existence and uniqueness of solutions for the generalized Korteweg de Vries equation Math. Z. 1990 9 36

[20] Ginibre, Jean Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain) Astérisque 1996

[21] Hofer, Helmut, Zehnder, Eduard Symplectic invariants and Hamiltonian dynamics 1994

[22] Joly, J.-L., Mã©Tivier, G., Rauch, J. A nonlinear instability for 3×3 systems of conservation laws Comm. Math. Phys. 1994 47 59

[23] Kato, Tosio The Cauchy problem for the Korteweg-de Vries equation 1981 293 307

[24] Keel, Markus, Tao, Terence Local and global well-posedness of wave maps on 𝐑¹⁺¹ for rough data Internat. Math. Res. Notices 1998 1117 1156

[25] Kenig, Carlos E., Ponce, Gustavo, Vega, Luis Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle Comm. Pure Appl. Math. 1993 527 620

[26] Kenig, Carlos E., Ponce, Gustavo, Vega, Luis A bilinear estimate with applications to the KdV equation J. Amer. Math. Soc. 1996 573 603

[27] Kenig, Carlos E., Ponce, Gustavo, Vega, Luis On the ill-posedness of some canonical dispersive equations Duke Math. J. 2001 617 633

[28] Kenig, Carlos E., Ponce, Gustavo, Vega, Luis Global well-posedness for semi-linear wave equations Comm. Partial Differential Equations 2000 1741 1752

[29] Kuksin, S. B. On squeezing and flow of energy for nonlinear wave equations Geom. Funct. Anal. 1995 668 701

[30] Kuksin, Sergej B. Infinite-dimensional symplectic capacities and a squeezing theorem for Hamiltonian PDEs Comm. Math. Phys. 1995 531 552

[31] Klainerman, S., Machedon, M. Smoothing estimates for null forms and applications Internat. Math. Res. Notices 1994

[32] Benedetto, John J., Heinig, Hans Fourier transform inequalities with measure weights Adv. Math. 1992 194 225

[33] Meyer, Yves, Coifman, Ronald Wavelets 1997

[34] Miura, Robert M. Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation J. Mathematical Phys. 1968 1202 1204

[35] Miura, Robert M. The Korteweg-de Vries equation: a survey of results SIAM Rev. 1976 412 459

[36] Miura, Robert M. Errata: “The Korteweg-deVries equation: a survey of results” (SIAM Rev. 18 (1976), no. 3, 412–459) SIAM Rev. 1977

[37] Rauch, Jeffrey, Reed, Michael Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension Duke Math. J. 1982 397 475

[38] Takaoka, Hideo Global well-posedness for the Kadomtsev-Petviashvili II equation Discrete Contin. Dynam. Systems 2000 483 499

[39] Tao, Terence Multilinear weighted convolution of 𝐿²-functions, and applications to nonlinear dispersive equations Amer. J. Math. 2001 839 908

[40] Tzvetkov, N. Global low-regularity solutions for Kadomtsev-Petviashvili equation Differential Integral Equations 2000 1289 1320

Cité par Sources :