𝐿^{𝑝} improving bounds for averages along curves
Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 605-638

Voir la notice de l'article provenant de la source American Mathematical Society

We establish local $(L^p,L^q)$ mapping properties for averages on curves. The exponents are sharp except for endpoints.
DOI : 10.1090/S0894-0347-03-00420-X

Tao, Terence 1 ; Wright, James 2

1 Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095-1555
2 School of Mathematics, University of Edinburgh, JCMB, King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland
@article{10_1090_S0894_0347_03_00420_X,
     author = {Tao, Terence and Wright, James},
     title = {{\dh}{\textquestiondown}^{{\dh}‘} improving bounds for averages along curves},
     journal = {Journal of the American Mathematical Society},
     pages = {605--638},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2003},
     doi = {10.1090/S0894-0347-03-00420-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00420-X/}
}
TY  - JOUR
AU  - Tao, Terence
AU  - Wright, James
TI  - 𝐿^{𝑝} improving bounds for averages along curves
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 605
EP  - 638
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00420-X/
DO  - 10.1090/S0894-0347-03-00420-X
ID  - 10_1090_S0894_0347_03_00420_X
ER  - 
%0 Journal Article
%A Tao, Terence
%A Wright, James
%T 𝐿^{𝑝} improving bounds for averages along curves
%J Journal of the American Mathematical Society
%D 2003
%P 605-638
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00420-X/
%R 10.1090/S0894-0347-03-00420-X
%F 10_1090_S0894_0347_03_00420_X
Tao, Terence; Wright, James. 𝐿^{𝑝} improving bounds for averages along curves. Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 605-638. doi: 10.1090/S0894-0347-03-00420-X

[1] Bourgain, J. Averages in the plane over convex curves and maximal operators J. Analyse Math. 1986 69 85

[2] Bourgain, J. Besicovitch type maximal operators and applications to Fourier analysis Geom. Funct. Anal. 1991 147 187

[3] Carbery, Anthony, Christ, Michael, Wright, James Multidimensional van der Corput and sublevel set estimates J. Amer. Math. Soc. 1999 981 1015

[4] Christ, Michael Weak type (1,1) bounds for rough operators Ann. of Math. (2) 1988 19 42

[5] Christ, Michael Hilbert transforms along curves. I. Nilpotent groups Ann. of Math. (2) 1985 575 596

[6] Christ, Michael Convolution, curvature, and combinatorics: a case study Internat. Math. Res. Notices 1998 1033 1048

[7] Christ, Michael, Nagel, Alexander, Stein, Elias M., Wainger, Stephen Singular and maximal Radon transforms: analysis and geometry Ann. of Math. (2) 1999 489 577

[8] Christ, Michael, Rubio De Francia, Josã© Luis Weak type (1,1) bounds for rough operators. II Invent. Math. 1988 225 237

[9] Gel′Fand, I. M., Graev, M. I. Line complexes in the space 𝐶ⁿ Funkcional. Anal. i Priložen. 1968 39 52

[10] Gel′Fand, I. M., Graev, M. I., ŠApiro, Z. Ja. Differential forms and integral geometry Funkcional. Anal. i Priložen. 1969 24 40

[11] Greenblatt, Michael A method for proving 𝐿^{𝑝}-boundedness of singular Radon transforms in codimension 1 Duke Math. J. 2001 363 393

[12] Greenleaf, Allan, Seeger, Andreas Fourier integral operators with fold singularities J. Reine Angew. Math. 1994 35 56

[13] Greenleaf, Allan, Seeger, Andreas Fourier integral operators with cusp singularities Amer. J. Math. 1998 1077 1119

[14] Greenleaf, Allan, Seeger, Andreas, Wainger, Stephen Estimates for generalized Radon transforms in three and four dimensions 2000 243 254

[15] Greenleaf, Allan, Seeger, Andreas, Wainger, Stephen On X-ray transforms for rigid line complexes and integrals over curves in 𝑅⁴ Proc. Amer. Math. Soc. 1999 3533 3545

[16] Greenleaf, Allan, Uhlmann, Gunther Nonlocal inversion formulas for the X-ray transform Duke Math. J. 1989 205 240

[17] Greenleaf, A., Uhlmann, G. Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms Ann. Inst. Fourier (Grenoble) 1990 443 466

[18] Greenleaf, Allan, Uhlmann, Gunther Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms. II Duke Math. J. 1991 415 444

[19] Guillemin, Victor, Sternberg, Shlomo Geometric asymptotics 1977

[20] Guillemin, Victor Cosmology in (2+1)-dimensions, cyclic models, and deformations of 𝑀_{2,1} 1989

[21] Helgason, Sigurä‘Ur A duality in integral geometry on symmetric spaces 1966 37 56

[22] Hã¶Rmander, Lars Fourier integral operators. I Acta Math. 1971 79 183

[23] Littman, Walter 𝐿^{𝑝}-𝐿^{𝑞}-estimates for singular integral operators arising from hyperbolic equations 1973 479 481

[24] Ward, Morgan, Dilworth, R. P. The lattice theory of ova Ann. of Math. (2) 1939 600 608

[25] Nagel, Alexander, Stein, Elias M., Wainger, Stephen Balls and metrics defined by vector fields. I. Basic properties Acta Math. 1985 103 147

[26] Mcmichael, David Damping oscillatory integrals with polynomial phase Math. Scand. 1993 215 228

[27] Oberlin, Daniel M. Convolution estimates for some measures on curves Proc. Amer. Math. Soc. 1987 56 60

[28] Oberlin, Daniel M. Multilinear proofs for two theorems on circular averages Colloq. Math. 1992 187 190

[29] Oberlin, Daniel M. A convolution estimate for a measure on a curve in 𝐑⁴ Proc. Amer. Math. Soc. 1997 1355 1361

[30] Oberlin, Daniel M. A convolution estimate for a measure on a curve in 𝐑⁴. II Proc. Amer. Math. Soc. 1999 217 221

[31] Oberlin, Daniel M. An estimate for a restricted X-ray transform Canad. Math. Bull. 2000 472 476

[32] Oberlin, Daniel, Smith, Hart F., Sogge, Christopher D. Averages over curves with torsion Math. Res. Lett. 1998 535 539

[33] Phong, Duong H. Regularity of Fourier integral operators 1995 862 874

[34] Phong, D. H. Singular integrals and Fourier integral operators 1995 286 320

[35] Phong, D. H., Stein, E. M. Hilbert integrals, singular integrals, and Radon transforms. I Acta Math. 1986 99 157

[36] Phong, D. H., Stein, E. M. Radon transforms and torsion Internat. Math. Res. Notices 1991 49 60

[37] Phong, D. H., Stein, E. M. On a stopping process for oscillatory integrals J. Geom. Anal. 1994 105 120

[38] Phong, D. H., Stein, E. M. Models of degenerate Fourier integral operators and Radon transforms Ann. of Math. (2) 1994 703 722

[39] Phong, D. H., Stein, E. M. The Newton polyhedron and oscillatory integral operators Acta Math. 1997 105 152

[40] Ricci, Fulvio, Stein, Elias M. Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds J. Funct. Anal. 1988 56 84

[41] Schlag, W. A generalization of Bourgain’s circular maximal theorem J. Amer. Math. Soc. 1997 103 122

[42] Secco, Silvia 𝐿^{𝑝}-improving properties of measures supported on curves on the Heisenberg group Studia Math. 1999 179 201

[43] Seeger, Andreas Degenerate Fourier integral operators in the plane Duke Math. J. 1993 685 745

[44] Seeger, Andreas Radon transforms and finite type conditions J. Amer. Math. Soc. 1998 869 897

[45] Stein, Elias M. Oscillatory integrals related to Radon-like transforms J. Fourier Anal. Appl. 1995 535 551

[46] Wolff, Thomas An improved bound for Kakeya type maximal functions Rev. Mat. Iberoamericana 1995 651 674

[47] Wolff, Thomas A Kakeya-type problem for circles Amer. J. Math. 1997 985 1026

[48] Wolff, Thomas A mixed norm estimate for the X-ray transform Rev. Mat. Iberoamericana 1998 561 600

[49] Wolff, Thomas Recent work connected with the Kakeya problem 1999 129 162

[50] Wolff, T. Local smoothing type estimates on 𝐿^{𝑝} for large 𝑝 Geom. Funct. Anal. 2000 1237 1288

Cité par Sources :