Voir la notice de l'article provenant de la source American Mathematical Society
Tao, Terence 1 ; Wright, James 2
@article{10_1090_S0894_0347_03_00420_X,
     author = {Tao, Terence and Wright, James},
     title = {{\dh}{\textquestiondown}^{{\dh}} improving bounds for averages along curves},
     journal = {Journal of the American Mathematical Society},
     pages = {605--638},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2003},
     doi = {10.1090/S0894-0347-03-00420-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00420-X/}
}
                      
                      
                    TY  - JOUR
AU  - Tao, Terence
AU  - Wright, James
TI  - ð¿^{ð} improving bounds for averages along curves
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 605
EP  - 638
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00420-X/
DO  - 10.1090/S0894-0347-03-00420-X
ID  - 10_1090_S0894_0347_03_00420_X
ER  - 
                      
                      
                    %0 Journal Article
%A Tao, Terence
%A Wright, James
%T ð¿^{ð} improving bounds for averages along curves
%J Journal of the American Mathematical Society
%D 2003
%P 605-638
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00420-X/
%R 10.1090/S0894-0347-03-00420-X
%F 10_1090_S0894_0347_03_00420_X
                      
                      
                    Tao, Terence; Wright, James. ð¿^{ð} improving bounds for averages along curves. Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 605-638. doi: 10.1090/S0894-0347-03-00420-X
                  
                [1] Averages in the plane over convex curves and maximal operators J. Analyse Math. 1986 69 85
[2] Besicovitch type maximal operators and applications to Fourier analysis Geom. Funct. Anal. 1991 147 187
[3] , , Multidimensional van der Corput and sublevel set estimates J. Amer. Math. Soc. 1999 981 1015
[4] Weak type (1,1) bounds for rough operators Ann. of Math. (2) 1988 19 42
[5] Hilbert transforms along curves. I. Nilpotent groups Ann. of Math. (2) 1985 575 596
[6] Convolution, curvature, and combinatorics: a case study Internat. Math. Res. Notices 1998 1033 1048
[7] , , , Singular and maximal Radon transforms: analysis and geometry Ann. of Math. (2) 1999 489 577
[8] , Weak type (1,1) bounds for rough operators. II Invent. Math. 1988 225 237
[9] , Line complexes in the space ð¶â¿ Funkcional. Anal. i Priložen. 1968 39 52
[10] , , Differential forms and integral geometry Funkcional. Anal. i Priložen. 1969 24 40
[11] A method for proving ð¿^{ð}-boundedness of singular Radon transforms in codimension 1 Duke Math. J. 2001 363 393
[12] , Fourier integral operators with fold singularities J. Reine Angew. Math. 1994 35 56
[13] , Fourier integral operators with cusp singularities Amer. J. Math. 1998 1077 1119
[14] , , Estimates for generalized Radon transforms in three and four dimensions 2000 243 254
[15] , , On X-ray transforms for rigid line complexes and integrals over curves in ð â´ Proc. Amer. Math. Soc. 1999 3533 3545
[16] , Nonlocal inversion formulas for the X-ray transform Duke Math. J. 1989 205 240
[17] , Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms Ann. Inst. Fourier (Grenoble) 1990 443 466
[18] , Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms. II Duke Math. J. 1991 415 444
[19] , Geometric asymptotics 1977
[20] Cosmology in (2+1)-dimensions, cyclic models, and deformations of ð_{2,1} 1989
[21] A duality in integral geometry on symmetric spaces 1966 37 56
[22] Fourier integral operators. I Acta Math. 1971 79 183
[23] ð¿^{ð}-ð¿^{ð}-estimates for singular integral operators arising from hyperbolic equations 1973 479 481
[24] , The lattice theory of ova Ann. of Math. (2) 1939 600 608
[25] , , Balls and metrics defined by vector fields. I. Basic properties Acta Math. 1985 103 147
[26] Damping oscillatory integrals with polynomial phase Math. Scand. 1993 215 228
[27] Convolution estimates for some measures on curves Proc. Amer. Math. Soc. 1987 56 60
[28] Multilinear proofs for two theorems on circular averages Colloq. Math. 1992 187 190
[29] A convolution estimate for a measure on a curve in ðâ´ Proc. Amer. Math. Soc. 1997 1355 1361
[30] A convolution estimate for a measure on a curve in ðâ´. II Proc. Amer. Math. Soc. 1999 217 221
[31] An estimate for a restricted X-ray transform Canad. Math. Bull. 2000 472 476
[32] , , Averages over curves with torsion Math. Res. Lett. 1998 535 539
[33] Regularity of Fourier integral operators 1995 862 874
[34] Singular integrals and Fourier integral operators 1995 286 320
[35] , Hilbert integrals, singular integrals, and Radon transforms. I Acta Math. 1986 99 157
[36] , Radon transforms and torsion Internat. Math. Res. Notices 1991 49 60
[37] , On a stopping process for oscillatory integrals J. Geom. Anal. 1994 105 120
[38] , Models of degenerate Fourier integral operators and Radon transforms Ann. of Math. (2) 1994 703 722
[39] , The Newton polyhedron and oscillatory integral operators Acta Math. 1997 105 152
[40] , Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds J. Funct. Anal. 1988 56 84
[41] A generalization of Bourgainâs circular maximal theorem J. Amer. Math. Soc. 1997 103 122
[42] ð¿^{ð}-improving properties of measures supported on curves on the Heisenberg group Studia Math. 1999 179 201
[43] Degenerate Fourier integral operators in the plane Duke Math. J. 1993 685 745
[44] Radon transforms and finite type conditions J. Amer. Math. Soc. 1998 869 897
[45] Oscillatory integrals related to Radon-like transforms J. Fourier Anal. Appl. 1995 535 551
[46] An improved bound for Kakeya type maximal functions Rev. Mat. Iberoamericana 1995 651 674
[47] A Kakeya-type problem for circles Amer. J. Math. 1997 985 1026
[48] A mixed norm estimate for the X-ray transform Rev. Mat. Iberoamericana 1998 561 600
[49] Recent work connected with the Kakeya problem 1999 129 162
[50] Local smoothing type estimates on ð¿^{ð} for large ð Geom. Funct. Anal. 2000 1237 1288
Cité par Sources :
