Multivariable cochain operations and little 𝑛-cubes
Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 681-704

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper we construct a small $E_\infty$ chain operad $\mathcal {S}$ which acts naturally on the normalized cochains $S^*X$ of a topological space. We also construct, for each $n$, a suboperad $\mathcal {S}_n$ which is quasi-isomorphic to the normalized singular chains of the little $n$-cubes operad. The case $n=2$ leads to a substantial simplification of our earlier proof of Deligne’s Hochschild cohomology conjecture.
DOI : 10.1090/S0894-0347-03-00419-3

McClure, James 1 ; Smith, Jeffrey 1

1 Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067
@article{10_1090_S0894_0347_03_00419_3,
     author = {McClure, James and Smith, Jeffrey},
     title = {Multivariable cochain operations and little {\dh}‘›-cubes},
     journal = {Journal of the American Mathematical Society},
     pages = {681--704},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2003},
     doi = {10.1090/S0894-0347-03-00419-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00419-3/}
}
TY  - JOUR
AU  - McClure, James
AU  - Smith, Jeffrey
TI  - Multivariable cochain operations and little 𝑛-cubes
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 681
EP  - 704
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00419-3/
DO  - 10.1090/S0894-0347-03-00419-3
ID  - 10_1090_S0894_0347_03_00419_3
ER  - 
%0 Journal Article
%A McClure, James
%A Smith, Jeffrey
%T Multivariable cochain operations and little 𝑛-cubes
%J Journal of the American Mathematical Society
%D 2003
%P 681-704
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-03-00419-3/
%R 10.1090/S0894-0347-03-00419-3
%F 10_1090_S0894_0347_03_00419_3
McClure, James; Smith, Jeffrey. Multivariable cochain operations and little 𝑛-cubes. Journal of the American Mathematical Society, Tome 16 (2003) no. 3, pp. 681-704. doi: 10.1090/S0894-0347-03-00419-3

[1] Benson, D. J. Representations and cohomology. II 1991

[2] Berger, Clemens Combinatorial models for real configuration spaces and 𝐸_{𝑛}-operads 1997 37 52

[3] Boardman, J. M., Vogt, R. M. Homotopy-everything 𝐻-spaces Bull. Amer. Math. Soc. 1968 1117 1122

[4] Dold, Albrecht Über die Steenrodschen Kohomologieoperationen Ann. of Math. (2) 1961 258 294

[5] Dold, A. Lectures on algebraic topology 1972

[6] Getzler, Ezra Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology 1993 65 78

[7] Hinich, V. A., Schechtman, V. V. On homotopy limit of homotopy algebras 1987 240 264

[8] Kadeishvili, T. V. The structure of the 𝐴(∞)-algebra, and the Hochschild and Harrison cohomologies Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 1988 19 27

[9] Kontsevich, Maxim Operads and motives in deformation quantization Lett. Math. Phys. 1999 35 72

[10] Kontsevich, Maxim, Soibelman, Yan Deformations of algebras over operads and the Deligne conjecture 2000 255 307

[11] Kå™Ã­Å¾, Igor, May, J. P. Operads, algebras, modules and motives Astérisque 1995

[12] Mandell, Michael A. 𝐸_{∞} algebras and 𝑝-adic homotopy theory Topology 2001 43 94

[13] Boardman, J. M., Vogt, R. M. Homotopy invariant algebraic structures on topological spaces 1973

[14] Smith, Jeffrey Henderson Simplicial group models for Ωⁿ𝑆ⁿ𝑋 Israel J. Math. 1989 330 350

[15] Birkhoff, Garrett, Ward, Morgan A characterization of Boolean algebras Ann. of Math. (2) 1939 609 610

[16] Voronov, Alexander A. Homotopy Gerstenhaber algebras 2000 307 331

Cité par Sources :