Relations in the cohomology ring of the moduli space of rank 2 Higgs bundles
Journal of the American Mathematical Society, Tome 16 (2003) no. 2, pp. 303-329

Voir la notice de l'article provenant de la source American Mathematical Society

The moduli space of stable bundles of rank $2$ and degree $1$ on a Riemann surface has rational cohomology generated by the so-called universal classes. The work of Baranovsky, King-Newstead, Siebert-Tian and Zagier provided a complete set of relations between these classes, expressed in terms of a recursion in the genus. This paper accomplishes the same thing for the noncompact moduli spaces of Higgs bundles, in the sense of Hitchin and Simpson. There are many more independent relations than for stable bundles, but in a sense the answer is simpler, since the formulas are completely explicit, not recursive. The results of Kirwan on equivariant cohomology for holomorphic circle actions are of key importance.
DOI : 10.1090/S0894-0347-02-00417-4

Hausel, Tamás 1, 2 ; Thaddeus, Michael 3

1 Department of Mathematics, University of California, Berkeley, California 94720
2 Department of Mathematics, University of Texas, RLM 11.168, 26th and Speedway, Austin, Texas 78712
3 Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
@article{10_1090_S0894_0347_02_00417_4,
     author = {Hausel, Tam\~A{\textexclamdown}s and Thaddeus, Michael},
     title = {Relations in the cohomology ring of the moduli space of rank 2 {Higgs} bundles},
     journal = {Journal of the American Mathematical Society},
     pages = {303--329},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2003},
     doi = {10.1090/S0894-0347-02-00417-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00417-4/}
}
TY  - JOUR
AU  - Hausel, Tamás
AU  - Thaddeus, Michael
TI  - Relations in the cohomology ring of the moduli space of rank 2 Higgs bundles
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 303
EP  - 329
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00417-4/
DO  - 10.1090/S0894-0347-02-00417-4
ID  - 10_1090_S0894_0347_02_00417_4
ER  - 
%0 Journal Article
%A Hausel, Tamás
%A Thaddeus, Michael
%T Relations in the cohomology ring of the moduli space of rank 2 Higgs bundles
%J Journal of the American Mathematical Society
%D 2003
%P 303-329
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00417-4/
%R 10.1090/S0894-0347-02-00417-4
%F 10_1090_S0894_0347_02_00417_4
Hausel, Tamás; Thaddeus, Michael. Relations in the cohomology ring of the moduli space of rank 2 Higgs bundles. Journal of the American Mathematical Society, Tome 16 (2003) no. 2, pp. 303-329. doi: 10.1090/S0894-0347-02-00417-4

[1] Arbarello, E., Cornalba, M., Griffiths, P. A., Harris, J. Geometry of algebraic curves. Vol. I 1985

[2] Atiyah, M. F., Bott, R. The Yang-Mills equations over Riemann surfaces Philos. Trans. Roy. Soc. London Ser. A 1983 523 615

[3] Atiyah, M. F., Bott, R. The moment map and equivariant cohomology Topology 1984 1 28

[4] Baranovskiä­, V. Yu. The cohomology ring of the moduli space of stable bundles with odd determinant Izv. Ross. Akad. Nauk Ser. Mat. 1994 204 210

[5] Corlette, Kevin Flat 𝐺-bundles with canonical metrics J. Differential Geom. 1988 361 382

[6] Donaldson, S. K. Twisted harmonic maps and the self-duality equations Proc. London Math. Soc. (3) 1987 127 131

[7] Goldman, William M. The symplectic nature of fundamental groups of surfaces Adv. in Math. 1984 200 225

[8] Gunning, R. C. Lectures on vector bundles over Riemann surfaces 1967

[9] Hausel, Tamã¡S Compactification of moduli of Higgs bundles J. Reine Angew. Math. 1998 169 192

[10] Hausel, Tamã¡S Vanishing of intersection numbers on the moduli space of Higgs bundles Adv. Theor. Math. Phys. 1998 1011 1040

[11] Hitchin, N. J. The self-duality equations on a Riemann surface Proc. London Math. Soc. (3) 1987 59 126

[12] King, A. D., Newstead, P. E. On the cohomology ring of the moduli space of rank 2 vector bundles on a curve Topology 1998 407 418

[13] Kirwan, Frances Clare Cohomology of quotients in symplectic and algebraic geometry 1984

[14] Kirwan, Frances The cohomology rings of moduli spaces of bundles over Riemann surfaces J. Amer. Math. Soc. 1992 853 906

[15] Magnus, Wilhelm, Karrass, Abraham, Solitar, Donald Combinatorial group theory: Presentations of groups in terms of generators and relations 1966

[16] Macdonald, I. G. Symmetric products of an algebraic curve Topology 1962 319 343

[17] Muã±Oz, Vicente Ring structure of the Floer cohomology of Σ×𝑆¹ Topology 1999 517 528

[18] Newstead, P. E. Characteristic classes of stable bundles of rank 2 over an algebraic curve Trans. Amer. Math. Soc. 1972 337 345

[19] Nitsure, Nitin Moduli space of semistable pairs on a curve Proc. London Math. Soc. (3) 1991 275 300

[20] Siebert, Bernd, Tian, Gang Recursive relations for the cohomology ring of moduli spaces of stable bundles Turkish J. Math. 1995 131 144

[21] Simpson, Carlos T. Higgs bundles and local systems Inst. Hautes Études Sci. Publ. Math. 1992 5 95

[22] Simpson, Carlos T. Moduli of representations of the fundamental group of a smooth projective variety. I Inst. Hautes Études Sci. Publ. Math. 1994 47 129

[23] Simpson, Carlos T. Moduli of representations of the fundamental group of a smooth projective variety. II Inst. Hautes Études Sci. Publ. Math. 1994

[24] Thaddeus, Michael Conformal field theory and the cohomology of the moduli space of stable bundles J. Differential Geom. 1992 131 149

[25] Thaddeus, Michael Stable pairs, linear systems and the Verlinde formula Invent. Math. 1994 317 353

[26] Thaddeus, Michael An introduction to the topology of the moduli space of stable bundles on a Riemann surface 1997 71 99

[27] Zagier, Don On the cohomology of moduli spaces of rank two vector bundles over curves 1995 533 563

Cité par Sources :