General elephants of three-fold divisorial contractions
Journal of the American Mathematical Society, Tome 16 (2003) no. 2, pp. 331-362

Voir la notice de l'article provenant de la source American Mathematical Society

We treat three-fold divisorial contractions whose exceptional divisors contract to Gorenstein points. We prove that a general element in the anti-canonical system around the exceptional divisor has at worst Du Val singularities. As application to classification, we describe divisorial contractions to compound $A_{n}$ points, and moreover, we deduce that any divisorial contraction to a compound $D_{n}$ or $E_{n}$ point has discrepancy $\le 4$.
DOI : 10.1090/S0894-0347-02-00416-2

Kawakita, Masayuki 1

1 Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan
@article{10_1090_S0894_0347_02_00416_2,
     author = {Kawakita, Masayuki},
     title = {General elephants of three-fold divisorial contractions},
     journal = {Journal of the American Mathematical Society},
     pages = {331--362},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2003},
     doi = {10.1090/S0894-0347-02-00416-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00416-2/}
}
TY  - JOUR
AU  - Kawakita, Masayuki
TI  - General elephants of three-fold divisorial contractions
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 331
EP  - 362
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00416-2/
DO  - 10.1090/S0894-0347-02-00416-2
ID  - 10_1090_S0894_0347_02_00416_2
ER  - 
%0 Journal Article
%A Kawakita, Masayuki
%T General elephants of three-fold divisorial contractions
%J Journal of the American Mathematical Society
%D 2003
%P 331-362
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00416-2/
%R 10.1090/S0894-0347-02-00416-2
%F 10_1090_S0894_0347_02_00416_2
Kawakita, Masayuki. General elephants of three-fold divisorial contractions. Journal of the American Mathematical Society, Tome 16 (2003) no. 2, pp. 331-362. doi: 10.1090/S0894-0347-02-00416-2

[1] Artin, M. On the solutions of analytic equations Invent. Math. 1968 277 291

[2] Artin, M. Algebraic approximation of structures over complete local rings Inst. Hautes Études Sci. Publ. Math. 1969 23 58

[3] Corti, Alessio Singularities of linear systems and 3-fold birational geometry 2000 259 312

[4] Cutkosky, Steven Elementary contractions of Gorenstein threefolds Math. Ann. 1988 521 525

[5] Hayakawa, Takayuki Blowing ups of 3-dimensional terminal singularities Publ. Res. Inst. Math. Sci. 1999 515 570

[6] Kawakita, Masayuki Divisorial contractions in dimension three which contract divisors to smooth points Invent. Math. 2001 105 119

[7] Kawamata, Yujiro Divisorial contractions to 3-dimensional terminal quotient singularities 1996 241 246

[8] Kawamata, Yujiro, Matsuda, Katsumi, Matsuki, Kenji Introduction to the minimal model problem 1987 283 360

[9] Kollã¡R, Jã¡Nos, Mori, Shigefumi Classification of three-dimensional flips J. Amer. Math. Soc. 1992 533 703

[10] Kollã¡R, Jã¡Nos, Mori, Shigefumi Birational geometry of algebraic varieties 1998

[11] Kollã¡R, J., Shepherd-Barron, N. I. Threefolds and deformations of surface singularities Invent. Math. 1988 299 338

[12] Markushevich, Dimitri Minimal discrepancy for a terminal cDV singularity is 1 J. Math. Sci. Univ. Tokyo 1996 445 456

[13] Mori, Shigefumi Threefolds whose canonical bundles are not numerically effective Ann. of Math. (2) 1982 133 176

[14] Mori, Shigefumi On 3-dimensional terminal singularities Nagoya Math. J. 1985 43 66

[15] Mori, Shigefumi Flip theorem and the existence of minimal models for 3-folds J. Amer. Math. Soc. 1988 117 253

[16] Reid, Miles Minimal models of canonical 3-folds 1983 131 180

[17] Reid, Miles Young person’s guide to canonical singularities 1987 345 414

[18] Å Okurov, V. V. Smoothness of a general anticanonical divisor on a Fano variety Izv. Akad. Nauk SSSR Ser. Mat. 1979 430 441

Cité par Sources :