Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_02_00415_0,
author = {Andrews, Ben},
title = {Classification of limiting shapes for isotropic curve flows},
journal = {Journal of the American Mathematical Society},
pages = {443--459},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2003},
doi = {10.1090/S0894-0347-02-00415-0},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00415-0/}
}
TY - JOUR AU - Andrews, Ben TI - Classification of limiting shapes for isotropic curve flows JO - Journal of the American Mathematical Society PY - 2003 SP - 443 EP - 459 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00415-0/ DO - 10.1090/S0894-0347-02-00415-0 ID - 10_1090_S0894_0347_02_00415_0 ER -
%0 Journal Article %A Andrews, Ben %T Classification of limiting shapes for isotropic curve flows %J Journal of the American Mathematical Society %D 2003 %P 443-459 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00415-0/ %R 10.1090/S0894-0347-02-00415-0 %F 10_1090_S0894_0347_02_00415_0
Andrews, Ben. Classification of limiting shapes for isotropic curve flows. Journal of the American Mathematical Society, Tome 16 (2003) no. 2, pp. 443-459. doi: 10.1090/S0894-0347-02-00415-0
[1] , The normalized curve shortening flow and homothetic solutions J. Differential Geom. 1986 175 196
[2] Contraction of convex hypersurfaces by their affine normal J. Differential Geom. 1996 207 230
[3] Monotone quantities and unique limits for evolving convex hypersurfaces Internat. Math. Res. Notices 1997 1001 1031
[4] Evolving convex curves Calc. Var. Partial Differential Equations 1998 315 371
[5] Motion of hypersurfaces by Gauss curvature Pacific J. Math. 2000 1 34
[6] , , On the affine heat equation for non-convex curves J. Amer. Math. Soc. 1998 601 634
[7] , Geometric expansion of convex plane curves J. Differential Geom. 1996 312 330
[8] , A convexity theorem for a class of anisotropic flows of plane curves Indiana Univ. Math. J. 1999 139 154
[9] An isoperimetric inequality with applications to curve shortening Duke Math. J. 1983 1225 1229
[10] Curve shortening makes convex curves circular Invent. Math. 1984 357 364
[11] Flow of nonconvex hypersurfaces into spheres J. Differential Geom. 1990 299 314
[12] The heat equation shrinks embedded plane curves to round points J. Differential Geom. 1987 285 314
[13] , The heat equation shrinking convex plane curves J. Differential Geom. 1986 69 96
[14] Isoperimetric estimates for the curve shrinking flow in the plane 1995 201 222
[15] A distance comparison principle for evolving curves Asian J. Math. 1998 127 133
[16] Singularities and self-intersections of curves evolving on surfaces Indiana Univ. Math. J. 1994 959 981
[17] , On affine plane curve evolution J. Funct. Anal. 1994 79 120
[18] Survey of singular geodesics 1996 325 339
[19] Correction to: âAn expansion of convex hypersurfacesâ [J. Differential Geom. 33 (1991), no. 1, 91â125 J. Differential Geom. 1992 763 765
[20] On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures Math. Z. 1990 355 372
[21] Convex curves moving homothetically by negative powers of their curvature Asian J. Math. 1999 635 656
Cité par Sources :