Voir la notice de l'article provenant de la source American Mathematical Society
Pareschi, Giuseppe 1 ; Popa, Mihnea 2
@article{10_1090_S0894_0347_02_00414_9,
     author = {Pareschi, Giuseppe and Popa, Mihnea},
     title = {Regularity on abelian varieties {I}},
     journal = {Journal of the American Mathematical Society},
     pages = {285--302},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2003},
     doi = {10.1090/S0894-0347-02-00414-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00414-9/}
}
                      
                      
                    TY - JOUR AU - Pareschi, Giuseppe AU - Popa, Mihnea TI - Regularity on abelian varieties I JO - Journal of the American Mathematical Society PY - 2003 SP - 285 EP - 302 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00414-9/ DO - 10.1090/S0894-0347-02-00414-9 ID - 10_1090_S0894_0347_02_00414_9 ER -
%0 Journal Article %A Pareschi, Giuseppe %A Popa, Mihnea %T Regularity on abelian varieties I %J Journal of the American Mathematical Society %D 2003 %P 285-302 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00414-9/ %R 10.1090/S0894-0347-02-00414-9 %F 10_1090_S0894_0347_02_00414_9
Pareschi, Giuseppe; Popa, Mihnea. Regularity on abelian varieties I. Journal of the American Mathematical Society, Tome 16 (2003) no. 2, pp. 285-302. doi: 10.1090/S0894-0347-02-00414-9
[1] , What can be computed in algebraic geometry? 1993 1 48
[2] , , Vanishing theorems, a theorem of Severi, and the equations defining projective varieties J. Amer. Math. Soc. 1991 587 602
[3] , Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville Invent. Math. 1987 389 407
[4] On effective non-vanishing and base-point-freeness Asian J. Math. 2000 173 181
[5] On the geometry of a theorem of Riemann Ann. of Math. (2) 1973 178 185
[6] Projective coordinate rings of abelian varieties 1989 225 235
[7] Complex abelian varieties and theta functions 1991
[8] Higher direct images of dualizing sheaves. I Ann. of Math. (2) 1986 11 42
[9] Shafarevich maps and automorphic forms 1995
[10] , Complex abelian varieties 1992
[11] A sharp Castelnuovo bound for smooth surfaces Duke Math. J. 1987 423 429
[12] Duality between ð·(ð) and ð·(ðÌ) with its application to Picard sheaves Nagoya Math. J. 1981 153 175
[13] Fourier functor and its application to the moduli of bundles on an abelian variety 1987 515 550
[14] Abelian varieties 1970
[15] On the equations defining abelian varieties. I Invent. Math. 1966 287 354
[16] Lectures on curves on an algebraic surface 1966
[17] A note on the normal generation of ample line bundles on abelian varieties Proc. Japan Acad. Ser. A Math. Sci. 1988 119 120
[18] , Heisenberg invariant quartics and ð®ð°_{ð}(2) for a curve of genus four Math. Proc. Cambridge Philos. Soc. 1999 295 319
[19] Syzygies of abelian varieties J. Amer. Math. Soc. 2000 651 664
[20] An introduction to homological algebra 1994
Cité par Sources :
