Regularity on abelian varieties I
Journal of the American Mathematical Society, Tome 16 (2003) no. 2, pp. 285-302

Voir la notice de l'article provenant de la source American Mathematical Society

We introduce the notion of Mukai regularity ($M$-regularity) for coherent sheaves on abelian varieties. The definition is based on the Fourier-Mukai transform, and in a special case depending on the choice of a polarization it parallels and strengthens the usual Castelnuovo-Mumford regularity. Mukai regularity has a large number of applications, ranging from basic properties of linear series on abelian varieties and defining equations for their subvarieties, to higher dimensional type statements and to a study of special classes of vector bundles. Some of these applications are explained here, while others are the subject of upcoming sequels.
DOI : 10.1090/S0894-0347-02-00414-9

Pareschi, Giuseppe 1 ; Popa, Mihnea 2

1 Dipartamento di Matematica, Università di Roma, Tor Vergata, V.le della Ricerca Scientifica, I-00133 Roma, Italy
2 Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138
@article{10_1090_S0894_0347_02_00414_9,
     author = {Pareschi, Giuseppe and Popa, Mihnea},
     title = {Regularity on abelian varieties {I}},
     journal = {Journal of the American Mathematical Society},
     pages = {285--302},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2003},
     doi = {10.1090/S0894-0347-02-00414-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00414-9/}
}
TY  - JOUR
AU  - Pareschi, Giuseppe
AU  - Popa, Mihnea
TI  - Regularity on abelian varieties I
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 285
EP  - 302
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00414-9/
DO  - 10.1090/S0894-0347-02-00414-9
ID  - 10_1090_S0894_0347_02_00414_9
ER  - 
%0 Journal Article
%A Pareschi, Giuseppe
%A Popa, Mihnea
%T Regularity on abelian varieties I
%J Journal of the American Mathematical Society
%D 2003
%P 285-302
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00414-9/
%R 10.1090/S0894-0347-02-00414-9
%F 10_1090_S0894_0347_02_00414_9
Pareschi, Giuseppe; Popa, Mihnea. Regularity on abelian varieties I. Journal of the American Mathematical Society, Tome 16 (2003) no. 2, pp. 285-302. doi: 10.1090/S0894-0347-02-00414-9

[1] Bayer, Dave, Mumford, David What can be computed in algebraic geometry? 1993 1 48

[2] Bertram, Aaron, Ein, Lawrence, Lazarsfeld, Robert Vanishing theorems, a theorem of Severi, and the equations defining projective varieties J. Amer. Math. Soc. 1991 587 602

[3] Green, Mark, Lazarsfeld, Robert Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville Invent. Math. 1987 389 407

[4] Kawamata, Yujiro On effective non-vanishing and base-point-freeness Asian J. Math. 2000 173 181

[5] Kempf, George On the geometry of a theorem of Riemann Ann. of Math. (2) 1973 178 185

[6] Kempf, George R. Projective coordinate rings of abelian varieties 1989 225 235

[7] Kempf, George R. Complex abelian varieties and theta functions 1991

[8] Kollã¡R, Jã¡Nos Higher direct images of dualizing sheaves. I Ann. of Math. (2) 1986 11 42

[9] Kollã¡R, Jã¡Nos Shafarevich maps and automorphic forms 1995

[10] Lange, Herbert, Birkenhake, Christina Complex abelian varieties 1992

[11] Lazarsfeld, Robert A sharp Castelnuovo bound for smooth surfaces Duke Math. J. 1987 423 429

[12] Mukai, Shigeru Duality between 𝐷(𝑋) and 𝐷(𝑋̂) with its application to Picard sheaves Nagoya Math. J. 1981 153 175

[13] Mukai, Shigeru Fourier functor and its application to the moduli of bundles on an abelian variety 1987 515 550

[14] Mumford, David Abelian varieties 1970

[15] Mumford, D. On the equations defining abelian varieties. I Invent. Math. 1966 287 354

[16] Mumford, David Lectures on curves on an algebraic surface 1966

[17] Ohbuchi, Akira A note on the normal generation of ample line bundles on abelian varieties Proc. Japan Acad. Ser. A Math. Sci. 1988 119 120

[18] Oxbury, William, Pauly, Christian Heisenberg invariant quartics and 𝒮𝒰_{𝒞}(2) for a curve of genus four Math. Proc. Cambridge Philos. Soc. 1999 295 319

[19] Pareschi, Giuseppe Syzygies of abelian varieties J. Amer. Math. Soc. 2000 651 664

[20] Weibel, Charles A. An introduction to homological algebra 1994

Cité par Sources :