On the equation 𝑑𝑖𝑣𝑌=𝑓 and application to control of phases
Journal of the American Mathematical Society, Tome 16 (2003) no. 2, pp. 393-426

Voir la notice de l'article provenant de la source American Mathematical Society

The main result is the following. Let $\Omega$ be a bounded Lipschitz domain in $\mathbb {R}^{d}$, $d\geq 2$. Then for every $f\in L^{d}(\Omega )$ with $\int f =0$, there exists a solution $u\in C^{0}(\bar \Omega )\cap W^{1, d}(\Omega )$ of the equation div $u=f$ in $\Omega$, satisfying in addition $u=0$ on $\partial \Omega$ and the estimate \begin{equation*}\Vert u\Vert _{L^{\infty }}+\Vert u\Vert _{W^{1, d}}\leq C\Vert f\Vert _{L^{d}} \end{equation*} where $C$ depends only on $\Omega$. However one cannot choose $u$ depending linearly on $f$. Our proof is constructive, but nonlinear—which is quite surprising for such an elementary linear PDE. When $d=2$ there is a simpler proof by duality—hence nonconstructive.
DOI : 10.1090/S0894-0347-02-00411-3

Bourgain, Jean 1 ; Brezis, Haïm 2, 3

1 Institute for Advanced Study, Princeton, New Jersey 08540
2 Analyse Numérique, Université P. et M. Curie, B.C. 187, 4 Pl. Jussieu, 75252 Paris Cedex 05, France
3 Department of Mathematics, Rutgers University, Hill Center, Busch Campus, 110 Frelinghuysen Rd., Piscataway, New Jersey 08854
@article{10_1090_S0894_0347_02_00411_3,
     author = {Bourgain, Jean and Brezis, Ha\~A{\textasciimacron}m},
     title = {On the equation {\dh}‘‘{\dh}‘–{\dh}‘{\textsterling}{\dh}‘Œ={\dh}‘“ and application to control of phases},
     journal = {Journal of the American Mathematical Society},
     pages = {393--426},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2003},
     doi = {10.1090/S0894-0347-02-00411-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00411-3/}
}
TY  - JOUR
AU  - Bourgain, Jean
AU  - Brezis, Haïm
TI  - On the equation 𝑑𝑖𝑣𝑌=𝑓 and application to control of phases
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 393
EP  - 426
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00411-3/
DO  - 10.1090/S0894-0347-02-00411-3
ID  - 10_1090_S0894_0347_02_00411_3
ER  - 
%0 Journal Article
%A Bourgain, Jean
%A Brezis, Haïm
%T On the equation 𝑑𝑖𝑣𝑌=𝑓 and application to control of phases
%J Journal of the American Mathematical Society
%D 2003
%P 393-426
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00411-3/
%R 10.1090/S0894-0347-02-00411-3
%F 10_1090_S0894_0347_02_00411_3
Bourgain, Jean; Brezis, Haïm. On the equation 𝑑𝑖𝑣𝑌=𝑓 and application to control of phases. Journal of the American Mathematical Society, Tome 16 (2003) no. 2, pp. 393-426. doi: 10.1090/S0894-0347-02-00411-3

[1] Adams, Robert A. Sobolev spaces 1975

[2] Arnold, Douglas N., Scott, L. Ridgway, Vogelius, Michael Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1988

[3] Bourgain, Jean, Brezis, Haim, Mironescu, Petru Lifting in Sobolev spaces J. Anal. Math. 2000 37 86

[4] Bourgain, Jean, Brezis, Haã¯M, Mironescu, Petru On the structure of the Sobolev space 𝐻^{1/2} with values into the circle C. R. Acad. Sci. Paris Sér. I Math. 2000 119 124

[5] Bourgain, Jean, Brezis, Haã¯M, Mironescu, Petru On the structure of the Sobolev space 𝐻^{1/2} with values into the circle C. R. Acad. Sci. Paris Sér. I Math. 2000 119 124

[6] Burago, D., Kleiner, B. Separated nets in Euclidean space and Jacobians of bi-Lipschitz maps Geom. Funct. Anal. 1998 273 282

[7] Dacorogna, Bernard, Moser, Jã¼Rgen On a partial differential equation involving the Jacobian determinant Ann. Inst. H. Poincaré C Anal. Non Linéaire 1990 1 26

[8] Duvaut, G., Lions, J.-L. Les inéquations en mécanique et en physique 1972

[9] Fefferman, C., Stein, E. M. 𝐻^{𝑝} spaces of several variables Acta Math. 1972 137 193

[10] Gromov, M. Asymptotic invariants of infinite groups 1993 1 295

[11] Magenes, Enrico, Stampacchia, Guido I problemi al contorno per le equazioni differenziali di tipo ellittico Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 1958 247 358

[12] Mcmullen, C. T. Lipschitz maps and nets in Euclidean space Geom. Funct. Anal. 1998 304 314

[13] Nirenberg, L. Topics in nonlinear functional analysis 1974

[14] Ornstein, Donald A non-equality for differential operators in the 𝐿₁ norm Arch. Rational Mech. Anal. 1962 40 49

[15] Riviã¨Re, Tristan, Ye, Dong Une résolution de l’équation à forme volume prescrite C. R. Acad. Sci. Paris Sér. I Math. 1994 25 28

[16] Riviã¨Re, Tristan, Ye, Dong Resolutions of the prescribed volume form equation NoDEA Nonlinear Differential Equations Appl. 1996 323 369

[17] Rubio De Francia, Josã© L. A Littlewood-Paley inequality for arbitrary intervals Rev. Mat. Iberoamericana 1985 1 14

[18] Temam, Roger Navier-Stokes equations 1979

[19] Uchiyama, Akihito A constructive proof of the Fefferman-Stein decomposition of BMO (𝑅ⁿ) Acta Math. 1982 215 241

[20] Wang, Xiao Ming A remark on the characterization of the gradient of a distribution Appl. Anal. 1993 35 40

[21] Wojtaszczyk, P. Banach spaces for analysts 1991

[22] Ye, Dong Prescribing the Jacobian determinant in Sobolev spaces Ann. Inst. H. Poincaré C Anal. Non Linéaire 1994 275 296

Cité par Sources :