Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra 𝔤𝔩(𝔪|𝔫)
Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 185-231

Voir la notice de l'article provenant de la source American Mathematical Society

We compute the characters of the finite dimensional irreducible representations of the Lie superalgebra $\mathfrak {gl}(m|n)$, and determine ${\operatorname {Ext}}$’s between simple modules in the category of finite dimensional representations. We formulate conjectures for the analogous results in category $\mathcal O$. The combinatorics parallels the combinatorics of certain canonical bases over the Lie algebra $\mathfrak {gl}(\infty )$.
DOI : 10.1090/S0894-0347-02-00408-3

Brundan, Jonathan 1

1 Department of Mathematics, University of Oregon, Eugene, Oregon 97403
@article{10_1090_S0894_0347_02_00408_3,
     author = {Brundan, Jonathan},
     title = {Kazhdan-Lusztig polynomials and character formulae for the {Lie} superalgebra {\dh}”{\textcurrency}{\dh}”{\textcopyright}({\dh}”{\textordfeminine}|{\dh}”{\guillemotleft})},
     journal = {Journal of the American Mathematical Society},
     pages = {185--231},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2003},
     doi = {10.1090/S0894-0347-02-00408-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00408-3/}
}
TY  - JOUR
AU  - Brundan, Jonathan
TI  - Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra 𝔤𝔩(𝔪|𝔫)
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 185
EP  - 231
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00408-3/
DO  - 10.1090/S0894-0347-02-00408-3
ID  - 10_1090_S0894_0347_02_00408_3
ER  - 
%0 Journal Article
%A Brundan, Jonathan
%T Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra 𝔤𝔩(𝔪|𝔫)
%J Journal of the American Mathematical Society
%D 2003
%P 185-231
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00408-3/
%R 10.1090/S0894-0347-02-00408-3
%F 10_1090_S0894_0347_02_00408_3
Brundan, Jonathan. Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra 𝔤𝔩(𝔪|𝔫). Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 185-231. doi: 10.1090/S0894-0347-02-00408-3

[1] Beä­Linson, Alexandre, Bernstein, Joseph Localisation de 𝑔-modules C. R. Acad. Sci. Paris Sér. I Math. 1981 15 18

[2] Beilinson, Alexander, Ginzburg, Victor, Soergel, Wolfgang Koszul duality patterns in representation theory J. Amer. Math. Soc. 1996 473 527

[3] Sundaram, S. Minakshi On non-linear partial differential equations of the parabolic type Proc. Indian Acad. Sci., Sect. A. 1939 479 494

[4] Bernå¡Teä­N, I. N., Gel′Fand, I. M., Gel′Fand, S. I. A certain category of 𝔤-modules Funkcional. Anal. i Priložen. 1976 1 8

[5] Bernå¡Teä­N, I. N., Leä­Tes, D. A. A formula for the characters of the irreducible finite-dimensional representations of Lie superalgebras of series 𝐺𝑙 and 𝑠𝑙 C. R. Acad. Bulgare Sci. 1980 1049 1051

[6] Bourbaki, Nicolas Commutative algebra. Chapters 1–7 1989

[7] Brundan, Jonathan Modular branching rules and the Mullineux map for Hecke algebras of type 𝐴 Proc. London Math. Soc. (3) 1998 551 581

[8] Brundan, Jonathan, Kleshchev, Alexander Hecke-Clifford superalgebras, crystals of type 𝐴_{2𝑙}⁽²⁾ and modular branching rules for 𝑆̂_{𝑛} Represent. Theory 2001 317 403

[9] Brylinski, J.-L., Kashiwara, M. Kazhdan-Lusztig conjecture and holonomic systems Invent. Math. 1981 387 410

[10] Cline, E., Parshall, B., Scott, L. Finite-dimensional algebras and highest weight categories J. Reine Angew. Math. 1988 85 99

[11] Cline, Edward T., Parshall, Brian J., Scott, Leonard L. Duality in highest weight categories 1989 7 22

[12] Cline, Edward, Parshall, Brian, Scott, Leonard Abstract Kazhdan-Lusztig theories Tohoku Math. J. (2) 1993 511 534

[13] Cline, Edward, Parshall, Brian, Scott, Leonard Infinitesimal Kazhdan-Lusztig theories 1992 43 73

[14] Deodhar, Vinay V. On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials J. Algebra 1987 483 506

[15] Dixmier, Jacques Enveloping algebras 1996

[16] Du, Jie 𝐼𝐶 bases and quantum linear groups 1994 135 148

[17] Du, Jie A note on quantized Weyl reciprocity at roots of unity Algebra Colloq. 1995 363 372

[18] Frenkel, I. B., Khovanov, M. G., Kirillov, A. A., Jr. Kazhdan-Lusztig polynomials and canonical basis Transform. Groups 1998 321 336

[19] Hughes, J. W. B., King, R. C., Van Der Jeugt, J. On the composition factors of Kac modules for the Lie superalgebras 𝑠𝑙(𝑚/𝑛) J. Math. Phys. 1992 470 491

[20] Jantzen, Jens Carsten Moduln mit einem höchsten Gewicht 1979

[21] Jantzen, Jens Carsten Representations of algebraic groups 1987

[22] Van Der Jeugt, J., Hughes, J. W. B., King, R. C., Thierry-Mieg, J. Character formulas for irreducible modules of the Lie superalgebras 𝑠𝑙(𝑚/𝑛) J. Math. Phys. 1990 2278 2304

[23] Van Der Jeugt, J., Hughes, J. W. B., King, R. C., Thierry-Mieg, J. A character formula for singly atypical modules of the Lie superalgebra 𝑠𝑙(𝑚/𝑛) Comm. Algebra 1990 3453 3480

[24] Van Der Jeugt, J., Zhang, R. B. Characters and composition factor multiplicities for the Lie superalgebra 𝔤𝔩(𝔪/𝔫) Lett. Math. Phys. 1999 49 61

[25] Kac, V. G. Lie superalgebras Advances in Math. 1977 8 96

[26] Kac, V. G. Characters of typical representations of classical Lie superalgebras Comm. Algebra 1977 889 897

[27] Kac, V. Representations of classical Lie superalgebras 1978 597 626

[28] Kac, Victor G., Wakimoto, Minoru Integrable highest weight modules over affine superalgebras and number theory 1994 415 456

[29] Kashiwara, Masaki Global crystal bases of quantum groups Duke Math. J. 1993 455 485

[30] Kashiwara, Masaki On crystal bases 1995 155 197

[31] Kazhdan, David, Lusztig, George Representations of Coxeter groups and Hecke algebras Invent. Math. 1979 165 184

[32] Kober, Hermann Transformationen von algebraischem Typ Ann. of Math. (2) 1939 549 559

[33] Lascoux, Alain, Leclerc, Bernard, Thibon, Jean-Yves Hecke algebras at roots of unity and crystal bases of quantum affine algebras Comm. Math. Phys. 1996 205 263

[34] Lusztig, George Introduction to quantum groups 1993

[35] Macdonald, I. G. Symmetric functions and Hall polynomials 1995

[36] Manin, Yuri I. Gauge field theory and complex geometry 1997

[37] Penkov, Ivan, Serganova, Vera Representations of classical Lie superalgebras of type 𝐼 Indag. Math. (N.S.) 1992 419 466

[38] Penkov, Ivan, Serganova, Vera Generic irreducible representations of finite-dimensional Lie superalgebras Internat. J. Math. 1994 389 419

[39] Serganova, Vera Kazhdan-Lusztig polynomials for Lie superalgebra 𝔤𝔩(𝔪|𝔫) 1993 151 165

[40] Serganova, Vera Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra 𝔤𝔩(𝔪|𝔫) Selecta Math. (N.S.) 1996 607 651

[41] Sergeev, A. N. Tensor algebra of the identity representation as a module over the Lie superalgebras 𝐺𝑙(𝑛,𝑚) and 𝑄(𝑛) Mat. Sb. (N.S.) 1984 422 430

[42] Sergeev, Alexander The invariant polynomials on simple Lie superalgebras Represent. Theory 1999 250 280

[43] Soergel, Wolfgang Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules Represent. Theory 1997 83 114

[44] Soergel, Wolfgang Character formulas for tilting modules over Kac-Moody algebras Represent. Theory 1998 432 448

[45] Vogan, David A., Jr. Irreducible characters of semisimple Lie groups. II. The Kazhdan-Lusztig conjectures Duke Math. J. 1979 805 859

[46] Weibel, Charles A. An introduction to homological algebra 1994

[47] Zou, Yi Ming Categories of finite-dimensional weight modules over type I classical Lie superalgebras J. Algebra 1996 459 482

Cité par Sources :