The nature of singularities in mean curvature flow of mean-convex sets
Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 123-138

Voir la notice de l'article provenant de la source American Mathematical Society

This paper analyzes the singular behavior of the mean curvature flow generated by the boundary of the compact mean-convex region of $\mathbf {R}^{n+1}$ or of an $(n+1)$-dimensional riemannian manifold. If $n7$, the moving boundary is shown to be very nearly convex in a spacetime neighborhood of any singularity. In particular, the tangent flows at singular points are all shrinking spheres or shrinking cylinders. If $n\ge 7$, the same results are shown up to the first time that singularities occur.
DOI : 10.1090/S0894-0347-02-00406-X

White, Brian 1

1 Department of Mathematics, Stanford University, Stanford, California 94305-2060
@article{10_1090_S0894_0347_02_00406_X,
     author = {White, Brian},
     title = {The nature of singularities in mean curvature flow of mean-convex sets},
     journal = {Journal of the American Mathematical Society},
     pages = {123--138},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2003},
     doi = {10.1090/S0894-0347-02-00406-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00406-X/}
}
TY  - JOUR
AU  - White, Brian
TI  - The nature of singularities in mean curvature flow of mean-convex sets
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 123
EP  - 138
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00406-X/
DO  - 10.1090/S0894-0347-02-00406-X
ID  - 10_1090_S0894_0347_02_00406_X
ER  - 
%0 Journal Article
%A White, Brian
%T The nature of singularities in mean curvature flow of mean-convex sets
%J Journal of the American Mathematical Society
%D 2003
%P 123-138
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00406-X/
%R 10.1090/S0894-0347-02-00406-X
%F 10_1090_S0894_0347_02_00406_X
White, Brian. The nature of singularities in mean curvature flow of mean-convex sets. Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 123-138. doi: 10.1090/S0894-0347-02-00406-X

[1] Brakke, Kenneth A. The motion of a surface by its mean curvature 1978

[2] Gallot, S., Hulin, D., Lafontaine, J. Riemannian geometry 1987

[3] Hamilton, Richard S. Four-manifolds with positive curvature operator J. Differential Geom. 1986 153 179

[4] Huisken, Gerhard Flow by mean curvature of convex surfaces into spheres J. Differential Geom. 1984 237 266

[5] Huisken, Gerhard Local and global behaviour of hypersurfaces moving by mean curvature 1993 175 191

[6] Huisken, Gerhard, Sinestrari, Carlo Mean curvature flow singularities for mean convex surfaces Calc. Var. Partial Differential Equations 1999 1 14

[7] Huisken, Gerhard, Sinestrari, Carlo Convexity estimates for mean curvature flow and singularities of mean convex surfaces Acta Math. 1999 45 70

[8] Ilmanen, Tom Elliptic regularization and partial regularity for motion by mean curvature Mem. Amer. Math. Soc. 1994

[9] Ilmanen, Tom The level-set flow on a manifold 1993 193 204

[10] Protter, Murray H., Weinberger, Hans F. Maximum principles in differential equations 1984

[11] Simons, James Minimal varieties in riemannian manifolds Ann. of Math. (2) 1968 62 105

[12] Schoen, Richard, Simon, Leon Regularity of stable minimal hypersurfaces Comm. Pure Appl. Math. 1981 741 797

[13] White, Brian Partial regularity of mean-convex hypersurfaces flowing by mean curvature Internat. Math. Res. Notices 1994

[14] White, Brian The topology of hypersurfaces moving by mean curvature Comm. Anal. Geom. 1995 317 333

[15] White, Brian Stratification of minimal surfaces, mean curvature flows, and harmonic maps J. Reine Angew. Math. 1997 1 35

[16] White, Brian The size of the singular set in mean curvature flow of mean-convex sets J. Amer. Math. Soc. 2000 665 695

Cité par Sources :