Analytic continuation of overconvergent eigenforms
Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 29-55

Voir la notice de l'article provenant de la source American Mathematical Society

Let $f$ be an overconvergent $p$-adic eigenform of level $Np^r$, $r\geq 1$, with non-zero $U_p$-eigenvalue. We show how $f$ may be analytically continued to a subset of $X_1(Np^r)^{\mathrm {an}}$ containing, for example, all the supersingular locus. Using these results we extend the main theorem of our earlier work with R. Taylor to many ramified cases.
DOI : 10.1090/S0894-0347-02-00405-8

Buzzard, Kevin 1

1 Department of Mathematics, Imperial College, Huxley Building, 180 Queen’s Gate, London SW7 2B2, England
@article{10_1090_S0894_0347_02_00405_8,
     author = {Buzzard, Kevin},
     title = {Analytic continuation of overconvergent eigenforms},
     journal = {Journal of the American Mathematical Society},
     pages = {29--55},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2003},
     doi = {10.1090/S0894-0347-02-00405-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00405-8/}
}
TY  - JOUR
AU  - Buzzard, Kevin
TI  - Analytic continuation of overconvergent eigenforms
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 29
EP  - 55
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00405-8/
DO  - 10.1090/S0894-0347-02-00405-8
ID  - 10_1090_S0894_0347_02_00405_8
ER  - 
%0 Journal Article
%A Buzzard, Kevin
%T Analytic continuation of overconvergent eigenforms
%J Journal of the American Mathematical Society
%D 2003
%P 29-55
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00405-8/
%R 10.1090/S0894-0347-02-00405-8
%F 10_1090_S0894_0347_02_00405_8
Buzzard, Kevin. Analytic continuation of overconvergent eigenforms. Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 29-55. doi: 10.1090/S0894-0347-02-00405-8

[1] Buhler, Joe P. Icosahedral Galois representations 1978

[2] Bosch, S., Gã¼Ntzer, U., Remmert, R. Non-Archimedean analysis 1984

[3] Buzzard, Kevin, Taylor, Richard Companion forms and weight one forms Ann. of Math. (2) 1999 905 919

[4] Coleman, Robert F. Reciprocity laws on curves Compositio Math. 1989 205 235

[5] Coleman, Robert F. The monodromy pairing Asian J. Math. 2000 315 330

[6] Trjitzinsky, W. J. General theory of singular integral equations with real kernels Trans. Amer. Math. Soc. 1939 202 279

[7] Deligne, P., Rapoport, M. Les schémas de modules de courbes elliptiques 1973 143 316

[8] Edixhoven, Bas Minimal resolution and stable reduction of 𝑋₀(𝑁) Ann. Inst. Fourier (Grenoble) 1990 31 67

[9] Gouvãªa, Fernando Q. Arithmetic of 𝑝-adic modular forms 1988

[10] Katz, Nicholas M. 𝑝-adic properties of modular schemes and modular forms 1973 69 190

[11] Kã¶Pf, Ursula Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen Schr. Math. Inst. Univ. Münster (2) 1974

[12] Katz, Nicholas M., Mazur, Barry Arithmetic moduli of elliptic curves 1985

Cité par Sources :