Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_02_00403_4,
     author = {Poltoratski, Alexei},
     title = {Maximal properties of the normalized {Cauchy} transform},
     journal = {Journal of the American Mathematical Society},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2003},
     doi = {10.1090/S0894-0347-02-00403-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00403-4/}
}
                      
                      
                    TY - JOUR AU - Poltoratski, Alexei TI - Maximal properties of the normalized Cauchy transform JO - Journal of the American Mathematical Society PY - 2003 SP - 1 EP - 17 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00403-4/ DO - 10.1090/S0894-0347-02-00403-4 ID - 10_1090_S0894_0347_02_00403_4 ER -
%0 Journal Article %A Poltoratski, Alexei %T Maximal properties of the normalized Cauchy transform %J Journal of the American Mathematical Society %D 2003 %P 1-17 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00403-4/ %R 10.1090/S0894-0347-02-00403-4 %F 10_1090_S0894_0347_02_00403_4
Poltoratski, Alexei. Maximal properties of the normalized Cauchy transform. Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 1-17. doi: 10.1090/S0894-0347-02-00403-4
[1] Multiplicity of boundary values of inner functions Izv. Akad. Nauk Armyan. SSR Ser. Mat. 1987
[2] Inner functions and related spaces of pseudocontinuable functions Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1989
[3] On the existence of angular boundary values of pseudocontinuable functions Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 1995
[4] Isometric embeddings of co-invariant subspaces of the shift operator Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 1996
[5] On the maximum principle for pseudocontinuable functions Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 1994
[6] Invariant subspaces of the backward shift operator in the space ð»^{ð} (ðâ(0,1)) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1979
[7] One dimensional perturbations of restricted shifts J. Analyse Math. 1972 169 191
[8] Analytic capacity, Cauchy kernel, Menger curvature, and rectifiability 1999 183 197
[9] Series for all the roots of the equation (ð§-ð)^{ð} Amer. Math. Monthly 1939 425 428
[10] Bounded analytic functions 1981
[11] , , Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces Internat. Math. Res. Notices 1998 463 487
[12] On the distributions of boundary values of Cauchy integrals Proc. Amer. Math. Soc. 1996 2455 2463
[13] Finite rank perturbations of singular spectra Internat. Math. Res. Notices 1997 421 436
[14] Equivalence up to a rank one perturbation Pacific J. Math. 2000 175 188
[15] Sub-Hardy Hilbert spaces in the unit disk 1994
[16] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993
Cité par Sources :
