Maximal properties of the normalized Cauchy transform
Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 1-17

Voir la notice de l'article provenant de la source American Mathematical Society

We study the normalized Cauchy transform in the unit disk. Our goal is to find an analog of the classical theorem by M. Riesz for the case of arbitrary weights. Let $\mu$ be a positive finite measure on the unit circle of the complex plane and $f\in L^{1}(\mu )$. Denote by $K\mu$ and $Kf\mu$ the Cauchy integrals of the measures $\mu$ and $f\mu$, respectively. The normalized Cauchy transform is defined as $C_{\mu }: f\mapsto \frac {Kf\mu }{K\mu }$. We prove that $C_{\mu }$ is bounded as an operator in $L^{p}(\mu )$ for $1$ but is unbounded (in general) for $p>2$. The associated maximal non-tangential operator is bounded for $1$ and has weak type $(2,2)$ but is unbounded for $p>2$.
DOI : 10.1090/S0894-0347-02-00403-4

Poltoratski, Alexei 1

1 Department of Mathemathcs, Texas A&M University, College Station, Texas 77843
@article{10_1090_S0894_0347_02_00403_4,
     author = {Poltoratski, Alexei},
     title = {Maximal properties of the normalized {Cauchy} transform},
     journal = {Journal of the American Mathematical Society},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2003},
     doi = {10.1090/S0894-0347-02-00403-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00403-4/}
}
TY  - JOUR
AU  - Poltoratski, Alexei
TI  - Maximal properties of the normalized Cauchy transform
JO  - Journal of the American Mathematical Society
PY  - 2003
SP  - 1
EP  - 17
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00403-4/
DO  - 10.1090/S0894-0347-02-00403-4
ID  - 10_1090_S0894_0347_02_00403_4
ER  - 
%0 Journal Article
%A Poltoratski, Alexei
%T Maximal properties of the normalized Cauchy transform
%J Journal of the American Mathematical Society
%D 2003
%P 1-17
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00403-4/
%R 10.1090/S0894-0347-02-00403-4
%F 10_1090_S0894_0347_02_00403_4
Poltoratski, Alexei. Maximal properties of the normalized Cauchy transform. Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 1-17. doi: 10.1090/S0894-0347-02-00403-4

[1] Aleksandrov, A. B. Multiplicity of boundary values of inner functions Izv. Akad. Nauk Armyan. SSR Ser. Mat. 1987

[2] Aleksandrov, A. B. Inner functions and related spaces of pseudocontinuable functions Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1989

[3] Aleksandrov, A. B. On the existence of angular boundary values of pseudocontinuable functions Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 1995

[4] Aleksandrov, A. B. Isometric embeddings of co-invariant subspaces of the shift operator Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 1996

[5] Aleksandrov, A. B. On the maximum principle for pseudocontinuable functions Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 1994

[6] Aleksandrov, A. B. Invariant subspaces of the backward shift operator in the space 𝐻^{𝑝} (𝑝∈(0,1)) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 1979

[7] Clark, Douglas N. One dimensional perturbations of restricted shifts J. Analyse Math. 1972 169 191

[8] David, Guy Analytic capacity, Cauchy kernel, Menger curvature, and rectifiability 1999 183 197

[9] Eagle, Albert Series for all the roots of the equation (𝑧-𝑎)^{𝑚} Amer. Math. Monthly 1939 425 428

[10] Garnett, John B. Bounded analytic functions 1981

[11] Nazarov, F., Treil, S., Volberg, A. Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces Internat. Math. Res. Notices 1998 463 487

[12] Poltoratski, Alexei G. On the distributions of boundary values of Cauchy integrals Proc. Amer. Math. Soc. 1996 2455 2463

[13] Poltoratski, Alexei G. Finite rank perturbations of singular spectra Internat. Math. Res. Notices 1997 421 436

[14] Poltoratski, Alexei G. Equivalence up to a rank one perturbation Pacific J. Math. 2000 175 188

[15] Sarason, Donald Sub-Hardy Hilbert spaces in the unit disk 1994

[16] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals 1993

Cité par Sources :