Voir la notice de l'article provenant de la source American Mathematical Society
Mateu, Joan 1 ; Tolsa, Xavier 2 ; Verdera, Joan 1
@article{10_1090_S0894_0347_02_00401_0,
     author = {Mateu, Joan and Tolsa, Xavier and Verdera, Joan},
     title = {The planar {Cantor} sets of zero analytic capacity and the local {{\dh}({\dh})-Theorem}},
     journal = {Journal of the American Mathematical Society},
     pages = {19--28},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2003},
     doi = {10.1090/S0894-0347-02-00401-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00401-0/}
}
                      
                      
                    TY - JOUR AU - Mateu, Joan AU - Tolsa, Xavier AU - Verdera, Joan TI - The planar Cantor sets of zero analytic capacity and the local ð(ð)-Theorem JO - Journal of the American Mathematical Society PY - 2003 SP - 19 EP - 28 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00401-0/ DO - 10.1090/S0894-0347-02-00401-0 ID - 10_1090_S0894_0347_02_00401_0 ER -
%0 Journal Article %A Mateu, Joan %A Tolsa, Xavier %A Verdera, Joan %T The planar Cantor sets of zero analytic capacity and the local ð(ð)-Theorem %J Journal of the American Mathematical Society %D 2003 %P 19-28 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00401-0/ %R 10.1090/S0894-0347-02-00401-0 %F 10_1090_S0894_0347_02_00401_0
Mateu, Joan; Tolsa, Xavier; Verdera, Joan. The planar Cantor sets of zero analytic capacity and the local ð(ð)-Theorem. Journal of the American Mathematical Society, Tome 16 (2003) no. 1, pp. 19-28. doi: 10.1090/S0894-0347-02-00401-0
[1] Lectures on singular integral operators 1990
[2] A ð(ð) theorem with remarks on analytic capacity and the Cauchy integral Colloq. Math. 1990 601 628
[3] Analytic capacity, Calderón-Zygmund operators, and rectifiability Publ. Mat. 1999 3 25
[4] , Analytic capacity and differentiability properties of finely harmonic functions Acta Math. 1982 127 152
[5] Hausdorff measure and capacity associated with Cauchy potentials Mat. Zametki 1998 923 934
[6] Positive length but zero analytic capacity Proc. Amer. Math. Soc. 1970
[7] Analytic capacity and measure 1972
[8] Variatsii mnozhestv i funktsiÄ 1975 352
[9] Square functions, Cauchy integrals, analytic capacity, and harmonic measure 1989 24 68
[10] On the analytic capacity and curvature of some Cantor sets with non-ð-finite length Publ. Mat. 1996 195 204
[11] Construction of ð»Â¹ functions concerning the estimate of analytic capacity Bull. London Math. Soc. 1987 154 160
[12] ð¿Â²-boundedness of the Cauchy integral operator for continuous measures Duke Math. J. 1999 269 304
[13] A weak type inequality for Cauchy transforms of finite measures Publ. Mat. 1992
[14] Removability, capacity and approximation 1994 419 473
[15] ð¿Â² boundedness of the Cauchy integral and Menger curvature 2001 139 158
Cité par Sources :
