Voir la notice de l'article provenant de la source American Mathematical Society
Abramovich, Dan 1 ; Karu, Kalle 2 ; Matsuki, Kenji 3 ; WÅodarczyk, JarosÅaw 4
@article{10_1090_S0894_0347_02_00396_X,
     author = {Abramovich, Dan and Karu, Kalle and Matsuki, Kenji and W\r{A}odarczyk, Jaros\r{A}aw},
     title = {Torification and factorization of birational maps},
     journal = {Journal of the American Mathematical Society},
     pages = {531--572},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2002},
     doi = {10.1090/S0894-0347-02-00396-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00396-X/}
}
                      
                      
                    TY - JOUR AU - Abramovich, Dan AU - Karu, Kalle AU - Matsuki, Kenji AU - WÅodarczyk, JarosÅaw TI - Torification and factorization of birational maps JO - Journal of the American Mathematical Society PY - 2002 SP - 531 EP - 572 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00396-X/ DO - 10.1090/S0894-0347-02-00396-X ID - 10_1090_S0894_0347_02_00396_X ER -
%0 Journal Article %A Abramovich, Dan %A Karu, Kalle %A Matsuki, Kenji %A WÅodarczyk, JarosÅaw %T Torification and factorization of birational maps %J Journal of the American Mathematical Society %D 2002 %P 531-572 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00396-X/ %R 10.1090/S0894-0347-02-00396-X %F 10_1090_S0894_0347_02_00396_X
Abramovich, Dan; Karu, Kalle; Matsuki, Kenji; WÅodarczyk, JarosÅaw. Torification and factorization of birational maps. Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 531-572. doi: 10.1090/S0894-0347-02-00396-X
[1] Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper J. Reine Angew. Math. 1939 1 44
[2] , Smoothness, semistability, and toroidal geometry J. Algebraic Geom. 1997 789 801
[3] , Weak semistable reduction in characteristic 0 Invent. Math. 2000 241 273
[4] On the distribution of normal point groups Proc. Nat. Acad. Sci. U.S.A. 1940 294 297
[5] , Equivariant resolution of singularities in characteristic 0 Math. Res. Lett. 1997 427 433
[6] , Topology of real algebraic sets 1992
[7] Stringy Hodge numbers of varieties with Gorenstein canonical singularities 1998 1 32
[8] Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs J. Eur. Math. Soc. (JEMS) 1999 5 33
[9] , Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant Invent. Math. 1997 207 302
[10] , Action dâun tore dans une variété projective 1990 509 539
[11] Strong domination/weak factorization of three-dimensional regular local rings J. Indian Math. Soc. (N.S.) 1981
[12] Factoring birational maps of threefolds after Sarkisov J. Algebraic Geom. 1995 223 254
[13] Birational morphisms of smooth threefolds collapsing three surfaces to a point Duke Math. J. 1981 589 632
[14] Local factorization of birational maps Adv. Math. 1997 167 315
[15] Local monomialization and factorization of morphisms Astérisque 1999
[16] , Monomial resolutions of morphisms of algebraic surfaces Comm. Algebra 2000 5935 5959
[17] The geometry of toric varieties Uspekhi Mat. Nauk 1978
[18] Birational geometry of three-dimensional toric varieties Izv. Akad. Nauk SSSR Ser. Mat. 1982
[19] , Germs of arcs on singular algebraic varieties and motivic integration Invent. Math. 1999 201 232
[20] , Variation of geometric invariant theory quotients Inst. Hautes Ãtudes Sci. Publ. Math. 1998 5 56
[21] Blow-ups of smooth toric 3-varieties Abh. Math. Sem. Univ. Hamburg 1987 193 201
[22] Introduction to toric varieties 1993
[23] , Direct images in non-Archimedean Arakelov theory Ann. Inst. Fourier (Grenoble) 2000 363 399
[24] An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures Ann. of Math. (2) 1962 190 208
[25] Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II Ann. of Math. (2) 1964
[26] Flattening theorem in complex-analytic geometry Amer. J. Math. 1975 503 547
[27] The geometry and topology of quotient varieties of torus actions Duke Math. J. 1992 151 184
[28] Relative geometric invariant theory and universal moduli spaces Internat. J. Math. 1996 151 181
[29] Algebraic geometry 1982
[30] Smoothness, semi-stability and alterations Inst. Hautes Ãtudes Sci. Publ. Math. 1996 51 93
[31] Toric singularities Amer. J. Math. 1994 1073 1099
[32] On the finiteness of generators of a pluricanonical ring for a 3-fold of general type Amer. J. Math. 1984 1503 1512
[33] Elementary contractions of algebraic 3-folds Ann. of Math. (2) 1984 95 110
[34] Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces Ann. of Math. (2) 1988 93 163
[35] , , , Toroidal embeddings. I 1973
[36] Resolving singularities of maps 1995 135 154
[37] Elementary contractions of algebraic 3-folds Ann. of Math. (2) 1984 95 110
[38] Decomposition of birational mappings of three-dimensional varieties outside of codimension 2 Izv. Akad. Nauk SSSR Ser. Mat. 1982 881 895
[39] , Un invariant birationnel des variétés de dimension 3 sur un corps fini J. Algebraic Geom. 2000 451 458
[40] Slices étales 1973 81 105
[41] Morse theory 1963
[42] Nets and groups Trans. Amer. Math. Soc. 1939 110 141
[43] The birational geometry of toric varieties J. Algebraic Geom. 1996 751 782
[44] Threefolds whose canonical bundles are not numerically effective Ann. of Math. (2) 1982 133 176
[45] Flip theorem and the existence of minimal models for 3-folds J. Amer. Math. Soc. 1988 117 253
[46] , , Geometric invariant theory 1994
[47] Torus embeddings and applications 1978
[48] Convex bodies and algebraic geometry 1988
[49] A compactification over \overline{ð}_{ð} of the universal moduli space of slope-semistable vector bundles J. Amer. Math. Soc. 1996 425 471
[50] Factorization of birational maps in dimension 3 1983 343 371
[51] , Critères de platitude et de projectivité. Techniques de âplatificationâ dâun module Invent. Math. 1971 1 89
[52] Canonical 3-folds 1980 273 310
[53] Minimal models of canonical 3-folds 1983 131 180
[54] Decomposition of toric morphisms 1983 395 418
[55] Sur les fonctions à variation bornée au sens de Tonelli Bull. Sém. Math. Univ. Wilno 1939 13 21
[56] Birational morphisms of smooth threefolds collapsing three surfaces to a curve Duke Math. J. 1981 401 420
[57] Monoidal transforms of regular local rings Amer. J. Math. 1973 294 320
[58] A nonvanishing theorem Izv. Akad. Nauk SSSR Ser. Mat. 1985 635 651
[59] Erreichbare Randpunkte Deutsche Math. 1939 455 461
[60] Factorization of a birational morphism between 4-folds Math. Ann. 1981 391 399
[61] Stable pairs, linear systems and the Verlinde formula Invent. Math. 1994 317 353
[62] Geometric invariant theory and flips J. Amer. Math. Soc. 1996 691 723
[63] Constructiveness of Hironakaâs resolution Ann. Sci. Ãcole Norm. Sup. (4) 1989 1 32
[64] Decomposition of birational toric maps in blow-ups & blow-downs Trans. Amer. Math. Soc. 1997 373 411
[65] Birational cobordisms and factorization of birational maps J. Algebraic Geom. 2000 425 449
[66] Algebraic surfaces 1971
Cité par Sources :
