Torification and factorization of birational maps
Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 531-572

Voir la notice de l'article provenant de la source American Mathematical Society

Building on work of the fourth author and Morelli’s work, we prove the weak factorization conjecture for birational maps in characteristic zero: a birational map between complete nonsingular varieties over an algebraically closed field $K$ of characteristic zero is a composite of blowings up and blowings down with nonsingular centers.
DOI : 10.1090/S0894-0347-02-00396-X

Abramovich, Dan 1 ; Karu, Kalle 2 ; Matsuki, Kenji 3 ; Włodarczyk, Jarosław 4

1 Department of Mathematics, Boston University, 111 Cummington Street, Boston, Massachusetts 02215
2 Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02139
3 Department of Mathematics, Purdue University, 1395 Mathematical Sciences Building, West Lafayette, Indiana 47907-1395
4 Instytut Matematyki UW, Banacha 2, 02-097 Warszawa, Poland
@article{10_1090_S0894_0347_02_00396_X,
     author = {Abramovich, Dan and Karu, Kalle and Matsuki, Kenji and W\r{A}‚odarczyk, Jaros\r{A}‚aw},
     title = {Torification and factorization of birational maps},
     journal = {Journal of the American Mathematical Society},
     pages = {531--572},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2002},
     doi = {10.1090/S0894-0347-02-00396-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00396-X/}
}
TY  - JOUR
AU  - Abramovich, Dan
AU  - Karu, Kalle
AU  - Matsuki, Kenji
AU  - Włodarczyk, Jarosław
TI  - Torification and factorization of birational maps
JO  - Journal of the American Mathematical Society
PY  - 2002
SP  - 531
EP  - 572
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00396-X/
DO  - 10.1090/S0894-0347-02-00396-X
ID  - 10_1090_S0894_0347_02_00396_X
ER  - 
%0 Journal Article
%A Abramovich, Dan
%A Karu, Kalle
%A Matsuki, Kenji
%A Włodarczyk, Jarosław
%T Torification and factorization of birational maps
%J Journal of the American Mathematical Society
%D 2002
%P 531-572
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00396-X/
%R 10.1090/S0894-0347-02-00396-X
%F 10_1090_S0894_0347_02_00396_X
Abramovich, Dan; Karu, Kalle; Matsuki, Kenji; Włodarczyk, Jarosław. Torification and factorization of birational maps. Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 531-572. doi: 10.1090/S0894-0347-02-00396-X

[1] Arf, Cahit Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper J. Reine Angew. Math. 1939 1 44

[2] Abramovich, D., De Jong, A. J. Smoothness, semistability, and toroidal geometry J. Algebraic Geom. 1997 789 801

[3] Abramovich, D., Karu, K. Weak semistable reduction in characteristic 0 Invent. Math. 2000 241 273

[4] Erdã¶S, P. On the distribution of normal point groups Proc. Nat. Acad. Sci. U.S.A. 1940 294 297

[5] Abramovich, Dan, Wang, Jianhua Equivariant resolution of singularities in characteristic 0 Math. Res. Lett. 1997 427 433

[6] Akbulut, Selman, King, Henry Topology of real algebraic sets 1992

[7] Batyrev, Victor V. Stringy Hodge numbers of varieties with Gorenstein canonical singularities 1998 1 32

[8] Batyrev, Victor V. Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs J. Eur. Math. Soc. (JEMS) 1999 5 33

[9] Bierstone, Edward, Milman, Pierre D. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant Invent. Math. 1997 207 302

[10] Brion, Michel, Procesi, Claudio Action d’un tore dans une variété projective 1990 509 539

[11] Christensen, Chris Strong domination/weak factorization of three-dimensional regular local rings J. Indian Math. Soc. (N.S.) 1981

[12] Corti, Alessio Factoring birational maps of threefolds after Sarkisov J. Algebraic Geom. 1995 223 254

[13] Crauder, Bruce Birational morphisms of smooth threefolds collapsing three surfaces to a point Duke Math. J. 1981 589 632

[14] Cutkosky, Steven Dale Local factorization of birational maps Adv. Math. 1997 167 315

[15] Cutkosky, Steven Dale Local monomialization and factorization of morphisms Astérisque 1999

[16] Cutkosky, Dale, Piltant, Olivier Monomial resolutions of morphisms of algebraic surfaces Comm. Algebra 2000 5935 5959

[17] Danilov, V. I. The geometry of toric varieties Uspekhi Mat. Nauk 1978

[18] Danilov, V. I. Birational geometry of three-dimensional toric varieties Izv. Akad. Nauk SSSR Ser. Mat. 1982

[19] Denef, Jan, Loeser, Franã§Ois Germs of arcs on singular algebraic varieties and motivic integration Invent. Math. 1999 201 232

[20] Dolgachev, Igor V., Hu, Yi Variation of geometric invariant theory quotients Inst. Hautes Études Sci. Publ. Math. 1998 5 56

[21] Ewald, G. Blow-ups of smooth toric 3-varieties Abh. Math. Sem. Univ. Hamburg 1987 193 201

[22] Fulton, William Introduction to toric varieties 1993

[23] Gillet, Henri, Soulã©, Christophe Direct images in non-Archimedean Arakelov theory Ann. Inst. Fourier (Grenoble) 2000 363 399

[24] Hironaka, Heisuke An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures Ann. of Math. (2) 1962 190 208

[25] Hironaka, Heisuke Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II Ann. of Math. (2) 1964

[26] Hironaka, Heisuke Flattening theorem in complex-analytic geometry Amer. J. Math. 1975 503 547

[27] Hu, Yi The geometry and topology of quotient varieties of torus actions Duke Math. J. 1992 151 184

[28] Hu, Yi Relative geometric invariant theory and universal moduli spaces Internat. J. Math. 1996 151 181

[29] Iitaka, Shigeru Algebraic geometry 1982

[30] De Jong, A. J. Smoothness, semi-stability and alterations Inst. Hautes Études Sci. Publ. Math. 1996 51 93

[31] Kato, Kazuya Toric singularities Amer. J. Math. 1994 1073 1099

[32] Kawamata, Yujiro On the finiteness of generators of a pluricanonical ring for a 3-fold of general type Amer. J. Math. 1984 1503 1512

[33] Kawamata, Yujiro Elementary contractions of algebraic 3-folds Ann. of Math. (2) 1984 95 110

[34] Kawamata, Yujiro Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces Ann. of Math. (2) 1988 93 163

[35] Kempf, G., Knudsen, Finn Faye, Mumford, D., Saint-Donat, B. Toroidal embeddings. I 1973

[36] King, Henry C. Resolving singularities of maps 1995 135 154

[37] Kawamata, Yujiro Elementary contractions of algebraic 3-folds Ann. of Math. (2) 1984 95 110

[38] Kulikov, Vik. S. Decomposition of birational mappings of three-dimensional varieties outside of codimension 2 Izv. Akad. Nauk SSSR Ser. Mat. 1982 881 895

[39] Lachaud, Gilles, Perret, Marc Un invariant birationnel des variétés de dimension 3 sur un corps fini J. Algebraic Geom. 2000 451 458

[40] Luna, Domingo Slices étales 1973 81 105

[41] Milnor, J. Morse theory 1963

[42] Baer, Reinhold Nets and groups Trans. Amer. Math. Soc. 1939 110 141

[43] Morelli, Robert The birational geometry of toric varieties J. Algebraic Geom. 1996 751 782

[44] Mori, Shigefumi Threefolds whose canonical bundles are not numerically effective Ann. of Math. (2) 1982 133 176

[45] Mori, Shigefumi Flip theorem and the existence of minimal models for 3-folds J. Amer. Math. Soc. 1988 117 253

[46] Mumford, D., Fogarty, J., Kirwan, F. Geometric invariant theory 1994

[47] Oda, Tadao Torus embeddings and applications 1978

[48] Oda, Tadao Convex bodies and algebraic geometry 1988

[49] Pandharipande, Rahul A compactification over \overline{𝑀}_{𝑔} of the universal moduli space of slope-semistable vector bundles J. Amer. Math. Soc. 1996 425 471

[50] Pinkham, Henry C. Factorization of birational maps in dimension 3 1983 343 371

[51] Raynaud, Michel, Gruson, Laurent Critères de platitude et de projectivité. Techniques de “platification” d’un module Invent. Math. 1971 1 89

[52] Reid, Miles Canonical 3-folds 1980 273 310

[53] Reid, Miles Minimal models of canonical 3-folds 1983 131 180

[54] Reid, Miles Decomposition of toric morphisms 1983 395 418

[55] Kempisty, Stefan Sur les fonctions à variation bornée au sens de Tonelli Bull. Sém. Math. Univ. Wilno 1939 13 21

[56] Schaps, Mary Birational morphisms of smooth threefolds collapsing three surfaces to a curve Duke Math. J. 1981 401 420

[57] Shannon, David L. Monoidal transforms of regular local rings Amer. J. Math. 1973 294 320

[58] Shokurov, V. V. A nonvanishing theorem Izv. Akad. Nauk SSSR Ser. Mat. 1985 635 651

[59] Teichmã¼Ller, Oswald Erreichbare Randpunkte Deutsche Math. 1939 455 461

[60] Teicher, Mina Factorization of a birational morphism between 4-folds Math. Ann. 1981 391 399

[61] Thaddeus, Michael Stable pairs, linear systems and the Verlinde formula Invent. Math. 1994 317 353

[62] Thaddeus, Michael Geometric invariant theory and flips J. Amer. Math. Soc. 1996 691 723

[63] Villamayor, Orlando Constructiveness of Hironaka’s resolution Ann. Sci. École Norm. Sup. (4) 1989 1 32

[64] Wå‚Odarczyk, Jaroså‚Aw Decomposition of birational toric maps in blow-ups & blow-downs Trans. Amer. Math. Soc. 1997 373 411

[65] Wå‚Odarczyk, Jaroså‚Aw Birational cobordisms and factorization of birational maps J. Algebraic Geom. 2000 425 449

[66] Zariski, Oscar Algebraic surfaces 1971

Cité par Sources :