Voir la notice de l'article provenant de la source American Mathematical Society
Cordoba, Diego 1, 2 ; Fefferman, Charles 2
@article{10_1090_S0894_0347_02_00394_6,
     author = {Cordoba, Diego and Fefferman, Charles},
     title = {Growth of solutions for {QG} and {2D} {Euler} equations},
     journal = {Journal of the American Mathematical Society},
     pages = {665--670},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2002},
     doi = {10.1090/S0894-0347-02-00394-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00394-6/}
}
                      
                      
                    TY - JOUR AU - Cordoba, Diego AU - Fefferman, Charles TI - Growth of solutions for QG and 2D Euler equations JO - Journal of the American Mathematical Society PY - 2002 SP - 665 EP - 670 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00394-6/ DO - 10.1090/S0894-0347-02-00394-6 ID - 10_1090_S0894_0347_02_00394_6 ER -
%0 Journal Article %A Cordoba, Diego %A Fefferman, Charles %T Growth of solutions for QG and 2D Euler equations %J Journal of the American Mathematical Society %D 2002 %P 665-670 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00394-6/ %R 10.1090/S0894-0347-02-00394-6 %F 10_1090_S0894_0347_02_00394_6
Cordoba, Diego; Fefferman, Charles. Growth of solutions for QG and 2D Euler equations. Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 665-670. doi: 10.1090/S0894-0347-02-00394-6
[1] , , Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar Nonlinearity 1994 1495 1533
[2] , , Nonsingular surface quasi-geostrophic flow Phys. Lett. A 1998 168 172
[3] Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation Ann. of Math. (2) 1998 1135 1152
[4] , Evolution of current sheets and regularity of ideal incompressible magnetic fluids in 2D Comm. Pure Appl. Math. 2000 512 524
[5] , A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow Phys. D 1996 515 522
[6] , Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow Phys. Fluids 1997 876 882
Cité par Sources :
