Growth of solutions for QG and 2D Euler equations
Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 665-670

Voir la notice de l'article provenant de la source American Mathematical Society

We study the rate of growth of sharp fronts of the Quasi-geostrophic equation and 2D incompressible Euler equations. The development of sharp fronts are due to a mechanism that piles up level sets very fast. Under a semi-uniform collapse, we obtain a lower bound on the minimum distance between the level sets.
DOI : 10.1090/S0894-0347-02-00394-6

Cordoba, Diego 1, 2 ; Fefferman, Charles 2

1 Department of Mathematics, University of Chicago, Chicago, Illinois 60637
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08540
@article{10_1090_S0894_0347_02_00394_6,
     author = {Cordoba, Diego and Fefferman, Charles},
     title = {Growth of solutions for {QG} and {2D} {Euler} equations},
     journal = {Journal of the American Mathematical Society},
     pages = {665--670},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2002},
     doi = {10.1090/S0894-0347-02-00394-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00394-6/}
}
TY  - JOUR
AU  - Cordoba, Diego
AU  - Fefferman, Charles
TI  - Growth of solutions for QG and 2D Euler equations
JO  - Journal of the American Mathematical Society
PY  - 2002
SP  - 665
EP  - 670
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00394-6/
DO  - 10.1090/S0894-0347-02-00394-6
ID  - 10_1090_S0894_0347_02_00394_6
ER  - 
%0 Journal Article
%A Cordoba, Diego
%A Fefferman, Charles
%T Growth of solutions for QG and 2D Euler equations
%J Journal of the American Mathematical Society
%D 2002
%P 665-670
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00394-6/
%R 10.1090/S0894-0347-02-00394-6
%F 10_1090_S0894_0347_02_00394_6
Cordoba, Diego; Fefferman, Charles. Growth of solutions for QG and 2D Euler equations. Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 665-670. doi: 10.1090/S0894-0347-02-00394-6

[1] Constantin, Peter, Majda, Andrew J., Tabak, Esteban Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar Nonlinearity 1994 1495 1533

[2] Constantin, Peter, Nie, Qing, Schã¶Rghofer, Norbert Nonsingular surface quasi-geostrophic flow Phys. Lett. A 1998 168 172

[3] Cordoba, Diego Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation Ann. of Math. (2) 1998 1135 1152

[4] Cordoba, Diego, Marliani, Christiane Evolution of current sheets and regularity of ideal incompressible magnetic fluids in 2D Comm. Pure Appl. Math. 2000 512 524

[5] Majda, Andrew J., Tabak, Esteban G. A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow Phys. D 1996 515 522

[6] Ohkitani, Koji, Yamada, Michio Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow Phys. Fluids 1997 876 882

Cité par Sources :