Blow up in finite time and dynamics of blow up solutions for the 𝐿²–critical generalized KdV equation
Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 617-664

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper, we describe the dynamics of blow up solutions for the critical generalized KdV equation such that the initial data is close to the soliton in $L^2$ and has decay in $L^2$ at the right. In particular, we prove that blow up occurs in finite time, and we obtain an upper bound on the blow up rate.
DOI : 10.1090/S0894-0347-02-00392-2

Martel, Yvan 1 ; Merle, Frank 2

1 Département de Mathématiques, Université de Cergy–Pontoise, 2, av. A. Chauvin, 95302 Cergy Pontoise, France
2 Département de Mathématiques, Université de Cergy–Pontoise, 2, av. A. Chauvin, 95302 Cergy Pontoise, France – and – Institut Universitaire de France
@article{10_1090_S0894_0347_02_00392_2,
     author = {Martel, Yvan and Merle, Frank},
     title = {Blow up in finite time and dynamics of blow up solutions for the {{\dh}{\textquestiondown}\^A{\texttwosuperior}\^a€“critical} generalized {KdV} equation},
     journal = {Journal of the American Mathematical Society},
     pages = {617--664},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2002},
     doi = {10.1090/S0894-0347-02-00392-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00392-2/}
}
TY  - JOUR
AU  - Martel, Yvan
AU  - Merle, Frank
TI  - Blow up in finite time and dynamics of blow up solutions for the 𝐿²–critical generalized KdV equation
JO  - Journal of the American Mathematical Society
PY  - 2002
SP  - 617
EP  - 664
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00392-2/
DO  - 10.1090/S0894-0347-02-00392-2
ID  - 10_1090_S0894_0347_02_00392_2
ER  - 
%0 Journal Article
%A Martel, Yvan
%A Merle, Frank
%T Blow up in finite time and dynamics of blow up solutions for the 𝐿²–critical generalized KdV equation
%J Journal of the American Mathematical Society
%D 2002
%P 617-664
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00392-2/
%R 10.1090/S0894-0347-02-00392-2
%F 10_1090_S0894_0347_02_00392_2
Martel, Yvan; Merle, Frank. Blow up in finite time and dynamics of blow up solutions for the 𝐿²–critical generalized KdV equation. Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 617-664. doi: 10.1090/S0894-0347-02-00392-2

[1] Bona, J. L., Dougalis, V. A., Karakashian, O. A., Mckinney, W. R. Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation Philos. Trans. Roy. Soc. London Ser. A 1995 107 164

[2] Bourgain, Jean Harmonic analysis and nonlinear partial differential equations 1995 31 44

[3] Ginibre, J., Tsutsumi, Y. Uniqueness of solutions for the generalized Korteweg-de Vries equation SIAM J. Math. Anal. 1989 1388 1425

[4] Kato, Tosio On the Cauchy problem for the (generalized) Korteweg-de Vries equation 1983 93 128

[5] Kenig, Carlos E., Ponce, Gustavo, Vega, Luis Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle Comm. Pure Appl. Math. 1993 527 620

[6] Lax, Peter D. Integrals of nonlinear equations of evolution and solitary waves Comm. Pure Appl. Math. 1968 467 490

[7] Martel, Yvan, Merle, Frank A Liouville theorem for the critical generalized Korteweg-de Vries equation J. Math. Pures Appl. (9) 2000 339 425

[8] Merle, Frank Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations Doc. Math. 1998 57 66

[9] Miura, Robert M. The Korteweg-de Vries equation: a survey of results SIAM Rev. 1976 412 459

[10] Weinstein, Michael I. Nonlinear Schrödinger equations and sharp interpolation estimates Comm. Math. Phys. 1982/83 567 576

Cité par Sources :