Martel, Yvan  1 ; Merle, Frank  2
@article{10_1090_S0894_0347_02_00392_2,
author = {Martel, Yvan and Merle, Frank},
title = {Blow up in finite time and dynamics of blow up solutions for the {\ensuremath{\mathit{L}}{\texttwosuperior}{\textendash}critical} generalized {KdV} equation},
journal = {Journal of the American Mathematical Society},
pages = {617--664},
year = {2002},
volume = {15},
number = {3},
doi = {10.1090/S0894-0347-02-00392-2},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00392-2/}
}
TY - JOUR AU - Martel, Yvan AU - Merle, Frank TI - Blow up in finite time and dynamics of blow up solutions for the 𝐿²–critical generalized KdV equation JO - Journal of the American Mathematical Society PY - 2002 SP - 617 EP - 664 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00392-2/ DO - 10.1090/S0894-0347-02-00392-2 ID - 10_1090_S0894_0347_02_00392_2 ER -
%0 Journal Article %A Martel, Yvan %A Merle, Frank %T Blow up in finite time and dynamics of blow up solutions for the 𝐿²–critical generalized KdV equation %J Journal of the American Mathematical Society %D 2002 %P 617-664 %V 15 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00392-2/ %R 10.1090/S0894-0347-02-00392-2 %F 10_1090_S0894_0347_02_00392_2
Martel, Yvan; Merle, Frank. Blow up in finite time and dynamics of blow up solutions for the 𝐿²–critical generalized KdV equation. Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 617-664. doi: 10.1090/S0894-0347-02-00392-2
[1] , , , Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation Philos. Trans. Roy. Soc. London Ser. A 1995 107 164
[2] Harmonic analysis and nonlinear partial differential equations 1995 31 44
[3] , Uniqueness of solutions for the generalized Korteweg-de Vries equation SIAM J. Math. Anal. 1989 1388 1425
[4] On the Cauchy problem for the (generalized) Korteweg-de Vries equation 1983 93 128
[5] , , Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle Comm. Pure Appl. Math. 1993 527 620
[6] Integrals of nonlinear equations of evolution and solitary waves Comm. Pure Appl. Math. 1968 467 490
[7] , A Liouville theorem for the critical generalized Korteweg-de Vries equation J. Math. Pures Appl. (9) 2000 339 425
[8] Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations Doc. Math. 1998 57 66
[9] The Korteweg-de Vries equation: a survey of results SIAM Rev. 1976 412 459
[10] Nonlinear Schrödinger equations and sharp interpolation estimates Comm. Math. Phys. 1982/83 567 576
Cité par Sources :