Singularities of pairs via jet schemes
    
    
  
  
  
      
      
      
        
Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 599-615
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source American Mathematical Society
            
              Let $X$ be a smooth variety and $Y\subset X$ a closed subscheme. We use motivic integration on the space of arcs of $X$ to characterize the fact that $(X,Y)$ is log canonical or log terminal using the dimension of the jet schemes of $Y$. This gives a formula for the log canonical threshold of $(X,Y)$, which we use to prove a result of Demailly and Kollár on the semicontinuity of log canonical thresholds.        
            
            
            
          
        
      @article{10_1090_S0894_0347_02_00391_0,
     author = {Musta\r{A}{\textsterling}\c{C}, Mircea},
     title = {Singularities of pairs via jet schemes},
     journal = {Journal of the American Mathematical Society},
     pages = {599--615},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2002},
     doi = {10.1090/S0894-0347-02-00391-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00391-0/}
}
                      
                      
                    TY - JOUR AU - MustaÅ£Ç, Mircea TI - Singularities of pairs via jet schemes JO - Journal of the American Mathematical Society PY - 2002 SP - 599 EP - 615 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00391-0/ DO - 10.1090/S0894-0347-02-00391-0 ID - 10_1090_S0894_0347_02_00391_0 ER -
%0 Journal Article %A MustaÅ£Ç, Mircea %T Singularities of pairs via jet schemes %J Journal of the American Mathematical Society %D 2002 %P 599-615 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00391-0/ %R 10.1090/S0894-0347-02-00391-0 %F 10_1090_S0894_0347_02_00391_0
MustaÅ£Ç, Mircea. Singularities of pairs via jet schemes. Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 599-615. doi: 10.1090/S0894-0347-02-00391-0
[1] , , Singularities of differentiable maps. Vol. I 1985
[2] Stringy Hodge numbers of varieties with Gorenstein canonical singularities 1998 1 32
[3] , Germs of arcs on singular algebraic varieties and motivic integration Invent. Math. 1999 201 232
[4] Multiplier ideals, vanishing theorems and applications 1997 203 219
[5] Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II Ann. of Math. (2) 1964
[6] Multiplier ideals of monomial ideals Trans. Amer. Math. Soc. 2001 2665 2671
[7] Singularities of pairs 1997 221 287
Cité par Sources :
