Singularities of pairs via jet schemes
Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 599-615

Voir la notice de l'article provenant de la source American Mathematical Society

Let $X$ be a smooth variety and $Y\subset X$ a closed subscheme. We use motivic integration on the space of arcs of $X$ to characterize the fact that $(X,Y)$ is log canonical or log terminal using the dimension of the jet schemes of $Y$. This gives a formula for the log canonical threshold of $(X,Y)$, which we use to prove a result of Demailly and Kollár on the semicontinuity of log canonical thresholds.
DOI : 10.1090/S0894-0347-02-00391-0

Mustaţǎ, Mircea 1, 2

1 Department of Mathematics, University of California, Berkeley, California 94720 – and – Institute of Mathematics of the Romanian Academy
2 Clay Mathematics Institute, 1770 Massachusetts Avenue, No. 331, Cambridge, Massachusetts 02140
@article{10_1090_S0894_0347_02_00391_0,
     author = {Musta\r{A}{\textsterling}\c{C}Ž, Mircea},
     title = {Singularities of pairs via jet schemes},
     journal = {Journal of the American Mathematical Society},
     pages = {599--615},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2002},
     doi = {10.1090/S0894-0347-02-00391-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00391-0/}
}
TY  - JOUR
AU  - Mustaţǎ, Mircea
TI  - Singularities of pairs via jet schemes
JO  - Journal of the American Mathematical Society
PY  - 2002
SP  - 599
EP  - 615
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00391-0/
DO  - 10.1090/S0894-0347-02-00391-0
ID  - 10_1090_S0894_0347_02_00391_0
ER  - 
%0 Journal Article
%A Mustaţǎ, Mircea
%T Singularities of pairs via jet schemes
%J Journal of the American Mathematical Society
%D 2002
%P 599-615
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00391-0/
%R 10.1090/S0894-0347-02-00391-0
%F 10_1090_S0894_0347_02_00391_0
Mustaţǎ, Mircea. Singularities of pairs via jet schemes. Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 599-615. doi: 10.1090/S0894-0347-02-00391-0

[1] Arnol′D, V. I., Guseä­N-Zade, S. M., Varchenko, A. N. Singularities of differentiable maps. Vol. I 1985

[2] Batyrev, Victor V. Stringy Hodge numbers of varieties with Gorenstein canonical singularities 1998 1 32

[3] Denef, Jan, Loeser, Franã§Ois Germs of arcs on singular algebraic varieties and motivic integration Invent. Math. 1999 201 232

[4] Ein, Lawrence Multiplier ideals, vanishing theorems and applications 1997 203 219

[5] Hironaka, Heisuke Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II Ann. of Math. (2) 1964

[6] Howald, J. A. Multiplier ideals of monomial ideals Trans. Amer. Math. Soc. 2001 2665 2671

[7] Kollã¡R, Jã¡Nos Singularities of pairs 1997 221 287

Cité par Sources :