Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_02_00390_9,
     author = {Emerton, Matthew},
     title = {Supersingular elliptic curves, theta series and weight two modular forms},
     journal = {Journal of the American Mathematical Society},
     pages = {671--714},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2002},
     doi = {10.1090/S0894-0347-02-00390-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00390-9/}
}
                      
                      
                    TY - JOUR AU - Emerton, Matthew TI - Supersingular elliptic curves, theta series and weight two modular forms JO - Journal of the American Mathematical Society PY - 2002 SP - 671 EP - 714 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00390-9/ DO - 10.1090/S0894-0347-02-00390-9 ID - 10_1090_S0894_0347_02_00390_9 ER -
%0 Journal Article %A Emerton, Matthew %T Supersingular elliptic curves, theta series and weight two modular forms %J Journal of the American Mathematical Society %D 2002 %P 671-714 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00390-9/ %R 10.1090/S0894-0347-02-00390-9 %F 10_1090_S0894_0347_02_00390_9
Emerton, Matthew. Supersingular elliptic curves, theta series and weight two modular forms. Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 671-714. doi: 10.1090/S0894-0347-02-00390-9
[1] , Hecke operators on Îâ(ð) Math. Ann. 1970 134 160
[2] A ð-adic Shimura isomorphism and ð-adic periods of modular forms 1994 21 51
[3] A ð-adic inner product on elliptic modular forms 1994 125 151
[4] Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper J. Reine Angew. Math. 1939 1 44
[5] Heights and the special values of ð¿-series 1987 115 187
[6] A tameness criterion for Galois representations associated to modular forms (mod ð) Duke Math. J. 1990 445 517
[7] Groupes de monodromie en géométrie algébrique. I 1972
[8] Residues and duality 1966
[9] Lectures on the theory of algebraic numbers 1981
[10] , On the representability of modular forms by theta series 1973 13 21
[11] Class number of a definite quaternion with prime discriminant Proc. Nat. Acad. Sci. U.S.A. 1958 312 314
[12] Modular curves and the Eisenstein ideal Inst. Hautes Ãtudes Sci. Publ. Math. 1977
[13] Modular forms and Fermatâs last theorem 1997
[14] , Two-dimensional representations in the arithmetic of modular curves Astérisque 1991
[15] On theta series mod ð J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1981
[16] Mod ð Hecke operators and congruences between modular forms Invent. Math. 1983 193 205
[17] On modular representations of ðºðð(\overline{ð}/ð) arising from modular forms Invent. Math. 1990 431 476
[18] Multiplicities of Galois representations in Jacobians of Shimura curves 1990 221 236
[19] Multiplicities of ð-finite mod ð Galois representations in ð½â(ðð) Bol. Soc. Brasil. Mat. (N.S.) 1991 177 188
[20] Torsion points on ð½â(ð) and Galois representations 1999 145 166
[21] Sur les représentations modulaires de degré 2 de ðºðð(\overline{ð}/ð) Duke Math. J. 1987 179 230
Cité par Sources :
