Mœglin, Colette  1 ; Tadić, Marko  2
@article{10_1090_S0894_0347_02_00389_2,
author = {M{\oe}glin, Colette and Tadi\'c, Marko},
title = {Construction of discrete series for classical \ensuremath{\mathit{p}}-adic groups},
journal = {Journal of the American Mathematical Society},
pages = {715--786},
year = {2002},
volume = {15},
number = {3},
doi = {10.1090/S0894-0347-02-00389-2},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00389-2/}
}
TY - JOUR AU - Mœglin, Colette AU - Tadić, Marko TI - Construction of discrete series for classical 𝑝-adic groups JO - Journal of the American Mathematical Society PY - 2002 SP - 715 EP - 786 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00389-2/ DO - 10.1090/S0894-0347-02-00389-2 ID - 10_1090_S0894_0347_02_00389_2 ER -
%0 Journal Article %A Mœglin, Colette %A Tadić, Marko %T Construction of discrete series for classical 𝑝-adic groups %J Journal of the American Mathematical Society %D 2002 %P 715-786 %V 15 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00389-2/ %R 10.1090/S0894-0347-02-00389-2 %F 10_1090_S0894_0347_02_00389_2
Mœglin, Colette; Tadić, Marko. Construction of discrete series for classical 𝑝-adic groups. Journal of the American Mathematical Society, Tome 15 (2002) no. 3, pp. 715-786. doi: 10.1090/S0894-0347-02-00389-2
[1] 𝐿-functoriality for dual pairs Astérisque 1989 85 129
[2] Unipotent automorphic representations: global motivation 1990 1 75
[3] Parabolic induction and Jacquet modules of representations of 𝑂(2𝑛,𝐹) Glas. Mat. Ser. III 1999 147 185
[4] , Induced representations of reductive 𝔭-adic groups. I Ann. Sci. École Norm. Sup. (4) 1977 441 472
[5] Reducibility of induced representations for 𝑆𝑝(2𝑛) and 𝑆𝑂(𝑛) Amer. J. Math. 1994 1101 1151
[6] , , Rankin-Selberg convolutions Amer. J. Math. 1983 367 464
[7] On supports of induced representations for symplectic and odd-orthogonal groups Amer. J. Math. 1997 1213 1262
[8] On square-integrable representations of classical 𝑝-adic groups. II Represent. Theory 2000 127 180
[9] , Proof of the Deligne-Langlands conjecture for Hecke algebras Invent. Math. 1987 153 215
[10] , A regularized Siegel-Weil formula: the first term identity Ann. of Math. (2) 1994 1 80
[11] Normalisation des opérateurs d’entrelacement et réductibilité des induites de cuspidales Ann. of Math. (2) 2000 817 847
[12] Représentations quadratiques unipotentes des groupes classiques 𝑝-adiques Duke Math. J. 1996 267 332
[13] Non nullité de certains relêvements par séries théta J. Lie Theory 1997 201 229
[14] , , Correspondances de Howe sur un corps 𝑝-adique 1987
[15] , Le spectre résiduel de 𝐺𝐿(𝑛) Ann. Sci. École Norm. Sup. (4) 1989 605 674
[16] On generic irreducible representations of 𝑆𝑝(𝑛,𝐹) and 𝑆𝑂(2𝑛+1,𝐹) Glas. Mat. Ser. III 1998 19 31
[17] A proof of Langlands’ conjecture on Plancherel measures Ann. of Math. (2) 1990 273 330
[18] On certain 𝐿-functions Amer. J. Math. 1981 297 355
[19] Local coefficients and normalization of intertwining operators for 𝐺𝐿(𝑛) Compositio Math. 1983 271 295
[20] Twisted endoscopy and reducibility of induced representations for 𝑝-adic groups Duke Math. J. 1992 1 41
[21] Fourier transforms of intertwining operators and Plancherel measures for 𝐺𝐿(𝑛) Amer. J. Math. 1984 67 111
[22] Special representations of reductive 𝑝-adic groups are not integrable Ann. of Math. (2) 1980 571 587
[23] On regular square integrable representations of 𝑝-adic groups Amer. J. Math. 1998 159 210
[24] On reducibility of parabolic induction Israel J. Math. 1998 29 91
[25] Square integrable representations of classical 𝑝-adic groups corresponding to segments Represent. Theory 1999 58 89
[26] Structure arising from induction and Jacquet modules of representations of classical 𝑝-adic groups J. Algebra 1995 1 33
[27] Representations of 𝑝-adic symplectic groups Compositio Math. 1994 123 181
[28] The local Langlands conjecture 1993 305 379
[29] Un exercice sur 𝐺𝑆𝑝(4,𝐹) et les représentations de Weil Bull. Soc. Math. France 1987 35 69
[30] Induced representations of reductive 𝔭-adic groups. II. On irreducible representations of 𝔊𝔏(𝔫) Ann. Sci. École Norm. Sup. (4) 1980 165 210
Cité par Sources :