Random polynomials having few or no real zeros
Journal of the American Mathematical Society, Tome 15 (2002) no. 4, pp. 857-892

Voir la notice de l'article provenant de la source American Mathematical Society

Consider a polynomial of large degree $n$ whose coefficients are independent, identically distributed, nondegenerate random variables having zero mean and finite moments of all orders. We show that such a polynomial has exactly $k$ real zeros with probability $n^{-b+o(1)}$ as $n \rightarrow \infty$ through integers of the same parity as the fixed integer $k \ge 0$. In particular, the probability that a random polynomial of large even degree $n$ has no real zeros is $n^{-b+o(1)}$. The finite, positive constant $b$ is characterized via the centered, stationary Gaussian process of correlation function ${\mathrm {sech}} (t/2)$. The value of $b$ depends neither on $k$ nor upon the specific law of the coefficients. Under an extra smoothness assumption about the law of the coefficients, with probability $n^{-b+o(1)}$ one may specify also the approximate locations of the $k$ zeros on the real line. The constant $b$ is replaced by $b/2$ in case the i.i.d. coefficients have a nonzero mean.
DOI : 10.1090/S0894-0347-02-00386-7

Dembo, Amir 1 ; Poonen, Bjorn 2 ; Shao, Qi-Man 3, 4 ; Zeitouni, Ofer 5

1 Department of Mathematics & Statistics, Stanford University, Stanford, California 94305
2 Department of Mathematics, University of California, Berkeley, California 94720-3840
3 Department of Mathematics, University of Oregon, Eugene, Oregon 97403
4 Department of Mathematics, National University of Singapore, Singapore, 117543
5 Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
@article{10_1090_S0894_0347_02_00386_7,
     author = {Dembo, Amir and Poonen, Bjorn and Shao, Qi-Man and Zeitouni, Ofer},
     title = {Random polynomials having few or no real zeros},
     journal = {Journal of the American Mathematical Society},
     pages = {857--892},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2002},
     doi = {10.1090/S0894-0347-02-00386-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00386-7/}
}
TY  - JOUR
AU  - Dembo, Amir
AU  - Poonen, Bjorn
AU  - Shao, Qi-Man
AU  - Zeitouni, Ofer
TI  - Random polynomials having few or no real zeros
JO  - Journal of the American Mathematical Society
PY  - 2002
SP  - 857
EP  - 892
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00386-7/
DO  - 10.1090/S0894-0347-02-00386-7
ID  - 10_1090_S0894_0347_02_00386_7
ER  - 
%0 Journal Article
%A Dembo, Amir
%A Poonen, Bjorn
%A Shao, Qi-Man
%A Zeitouni, Ofer
%T Random polynomials having few or no real zeros
%J Journal of the American Mathematical Society
%D 2002
%P 857-892
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-02-00386-7/
%R 10.1090/S0894-0347-02-00386-7
%F 10_1090_S0894_0347_02_00386_7
Dembo, Amir; Poonen, Bjorn; Shao, Qi-Man; Zeitouni, Ofer. Random polynomials having few or no real zeros. Journal of the American Mathematical Society, Tome 15 (2002) no. 4, pp. 857-892. doi: 10.1090/S0894-0347-02-00386-7

[1] Adler, Robert J. An introduction to continuity, extrema, and related topics for general Gaussian processes 1990

[2] Bharucha-Reid, A. T., Sambandham, M. Random polynomials 1986

[3] Csã¶Rgå‘, M., Rã©Vã©Sz, P. Strong approximations in probability and statistics 1981 284

[4] Dembo, Amir, Zeitouni, Ofer Large deviations techniques and applications 1998

[5] Edelman, Alan, Kostlan, Eric How many zeros of a random polynomial are real? Bull. Amer. Math. Soc. (N.S.) 1995 1 37

[6] Maclane, Saunders Steinitz field towers for modular fields Trans. Amer. Math. Soc. 1939 23 45

[7] Farahmand, Kambiz Topics in random polynomials 1998

[8] Gradshteyn, I. S., Ryzhik, I. M. Table of integrals, series, and products 1980

[9] Ibragimov, I. A., Maslova, N. B. The average number of zeros of random polynomials Vestnik Leningrad. Univ. 1968 171 172

[10] Ibragimov, I. A., Maslova, N. B. The mean number of real zeros of random polynomials. I. Coefficients with zero mean Teor. Verojatnost. i Primenen. 1971 229 248

[11] Ibragimov, I. A., Maslova, N. B. The mean number of real zeros of random polynomials. II. Coefficients with a nonzero mean Teor. Verojatnost. i Primenen. 1971 495 503

[12] Ibragimov, I. A., Maslova, N. B. The average number of real roots of random polynomials Dokl. Akad. Nauk SSSR 1971 13 16

[13] Ibragimov, Ildar, Zeitouni, Ofer On roots of random polynomials Trans. Amer. Math. Soc. 1997 2427 2441

[14] Jamrom, B. R. The average number of real zeros of random polynomials Dokl. Akad. Nauk SSSR 1972 1059 1060

[15] Corliss, J. J. Upper limits to the real roots of a real algebraic equation Amer. Math. Monthly 1939 334 338

[16] Ward, Morgan, Dilworth, R. P. The lattice theory of ova Ann. of Math. (2) 1939 600 608

[17] Komlã³S, J., Major, P., Tusnã¡Dy, G. An approximation of partial sums of independent RV’s, and the sample DF. II Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1976 33 58

[18] Eagle, Albert Series for all the roots of a trinomial equation Amer. Math. Monthly 1939 422 425

[19] Logan, B. F., Shepp, L. A. Real zeros of random polynomials Proc. London Math. Soc. (3) 1968 29 35

[20] Logan, B. F., Shepp, L. A. Real zeros of random polynomials. II Proc. London Math. Soc. (3) 1968 308 314

[21] Maslova, N. B. The variance of the number of real roots of random polynomials Teor. Verojatnost. i Primenen. 1974 36 51

[22] Maslova, N. B. The distribution of the number of real roots of random polynomials Teor. Verojatnost. i Primenen. 1974 488 500

[23] Poonen, Bjorn, Stoll, Michael The Cassels-Tate pairing on polarized abelian varieties Ann. of Math. (2) 1999 1109 1149

[24] Stevens, D. C. The average number of real zeros of a random polynomial Comm. Pure Appl. Math. 1969 457 477

[25] Stout, William F. Almost sure convergence 1974

[26] Strassen, V. An invariance principle for the law of the iterated logarithm Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1964

[27] Wang, You Jing Bounds on the average number of real roots of a random algebraic equation Chinese Ann. Math. Ser. A 1983 601 605

[28] Wilkins, J. Ernest, Jr. An asymptotic expansion for the expected number of real zeros of a random polynomial Proc. Amer. Math. Soc. 1988 1249 1258

Cité par Sources :