Frenkel, E.  1 ; Gaitsgory, D.  2 ; Vilonen, K.  3
@article{10_1090_S0894_0347_01_00388_5,
author = {Frenkel, E. and Gaitsgory, D. and Vilonen, K.},
title = {On the geometric {Langlands} conjecture},
journal = {Journal of the American Mathematical Society},
pages = {367--417},
year = {2002},
volume = {15},
number = {2},
doi = {10.1090/S0894-0347-01-00388-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00388-5/}
}
TY - JOUR AU - Frenkel, E. AU - Gaitsgory, D. AU - Vilonen, K. TI - On the geometric Langlands conjecture JO - Journal of the American Mathematical Society PY - 2002 SP - 367 EP - 417 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00388-5/ DO - 10.1090/S0894-0347-01-00388-5 ID - 10_1090_S0894_0347_01_00388_5 ER -
%0 Journal Article %A Frenkel, E. %A Gaitsgory, D. %A Vilonen, K. %T On the geometric Langlands conjecture %J Journal of the American Mathematical Society %D 2002 %P 367-417 %V 15 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00388-5/ %R 10.1090/S0894-0347-01-00388-5 %F 10_1090_S0894_0347_01_00388_5
Frenkel, E.; Gaitsgory, D.; Vilonen, K. On the geometric Langlands conjecture. Journal of the American Mathematical Society, Tome 15 (2002) no. 2, pp. 367-417. doi: 10.1090/S0894-0347-01-00388-5
[1] , Simple algebras, base change, and the advanced theory of the trace formula 1989
[2] , , Faisceaux pervers 1982 5 171
[3] , Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes C. R. Acad. Sci. Paris Sér. I Math. 1981 707 710
[4] , The unramified principal series of 𝑝-adic groups. II. The Whittaker function Compositio Math. 1980 207 231
[5] , Converse theorems for 𝐺𝐿_{𝑛} Inst. Hautes Études Sci. Publ. Math. 1994 157 214
[6] La conjecture de Weil. II Inst. Hautes Études Sci. Publ. Math. 1980 137 252
[7] Two-dimensional 𝑙-adic representations of the fundamental group of a curve over a finite field and automorphic forms on 𝐺𝐿(2) Amer. J. Math. 1983 85 114
[8] , , , Geometric realization of Whittaker functions and the Langlands conjecture J. Amer. Math. Soc. 1998 451 484
[9] Young tableaux 1997
[10] Théorie de Brauer et caractéristique d’Euler-Poincaré (d’après P. Deligne) 1981 161 172
[11] On lifting 1984 209 249
[12] Correspondance de Langlands géométrique pour les corps de fonctions Duke Math. J. 1987 309 359
[13] , Champs algébriques 2000
[14] Singularities, character formulas, and a 𝑞-analog of weight multiplicities 1983 208 229
[15] , Perverse sheaves on affine Grassmannians and Langlands duality Math. Res. Lett. 2000 13 24
[16] Euler subgroups 1975 597 620
[17] Connections on the total Picard sheaf and the KP hierarchy Acta Appl. Math. 1996 297 308
[18] The multiplicity one theorem for 𝐺𝐿_{𝑛} Ann. of Math. (2) 1974 171 193
[19] On an explicit formula for class-1 “Whittaker functions” on 𝐺𝐿_{𝑛} over 𝑃-adic fields Proc. Japan Acad. 1976 180 182
[20] (Co)-homologie d’intersection et faisceaux pervers 1982 129 157
[21] Young symmetry, the flag manifold, and representations of 𝐺𝐿(𝑛) J. Algebra 1979 414 462
Cité par Sources :