Voir la notice de l'article provenant de la source American Mathematical Society
Frenkel, E. 1 ; Gaitsgory, D. 2 ; Vilonen, K. 3
@article{10_1090_S0894_0347_01_00388_5,
     author = {Frenkel, E. and Gaitsgory, D. and Vilonen, K.},
     title = {On the geometric {Langlands} conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {367--417},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2002},
     doi = {10.1090/S0894-0347-01-00388-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00388-5/}
}
                      
                      
                    TY - JOUR AU - Frenkel, E. AU - Gaitsgory, D. AU - Vilonen, K. TI - On the geometric Langlands conjecture JO - Journal of the American Mathematical Society PY - 2002 SP - 367 EP - 417 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00388-5/ DO - 10.1090/S0894-0347-01-00388-5 ID - 10_1090_S0894_0347_01_00388_5 ER -
%0 Journal Article %A Frenkel, E. %A Gaitsgory, D. %A Vilonen, K. %T On the geometric Langlands conjecture %J Journal of the American Mathematical Society %D 2002 %P 367-417 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00388-5/ %R 10.1090/S0894-0347-01-00388-5 %F 10_1090_S0894_0347_01_00388_5
Frenkel, E.; Gaitsgory, D.; Vilonen, K. On the geometric Langlands conjecture. Journal of the American Mathematical Society, Tome 15 (2002) no. 2, pp. 367-417. doi: 10.1090/S0894-0347-01-00388-5
[1] , Simple algebras, base change, and the advanced theory of the trace formula 1989
[2] , , Faisceaux pervers 1982 5 171
[3] , Représentations des groupes de Weyl et homologie dâintersection pour les variétés nilpotentes C. R. Acad. Sci. Paris Sér. I Math. 1981 707 710
[4] , The unramified principal series of ð-adic groups. II. The Whittaker function Compositio Math. 1980 207 231
[5] , Converse theorems for ðºð¿_{ð} Inst. Hautes Ãtudes Sci. Publ. Math. 1994 157 214
[6] La conjecture de Weil. II Inst. Hautes Ãtudes Sci. Publ. Math. 1980 137 252
[7] Two-dimensional ð-adic representations of the fundamental group of a curve over a finite field and automorphic forms on ðºð¿(2) Amer. J. Math. 1983 85 114
[8] , , , Geometric realization of Whittaker functions and the Langlands conjecture J. Amer. Math. Soc. 1998 451 484
[9] Young tableaux 1997
[10] Théorie de Brauer et caractéristique dâEuler-Poincaré (dâaprès P. Deligne) 1981 161 172
[11] On lifting 1984 209 249
[12] Correspondance de Langlands géométrique pour les corps de fonctions Duke Math. J. 1987 309 359
[13] , Champs algébriques 2000
[14] Singularities, character formulas, and a ð-analog of weight multiplicities 1983 208 229
[15] , Perverse sheaves on affine Grassmannians and Langlands duality Math. Res. Lett. 2000 13 24
[16] Euler subgroups 1975 597 620
[17] Connections on the total Picard sheaf and the KP hierarchy Acta Appl. Math. 1996 297 308
[18] The multiplicity one theorem for ðºð¿_{ð} Ann. of Math. (2) 1974 171 193
[19] On an explicit formula for class-1 âWhittaker functionsâ on ðºð¿_{ð} over ð-adic fields Proc. Japan Acad. 1976 180 182
[20] (Co)-homologie dâintersection et faisceaux pervers 1982 129 157
[21] Young symmetry, the flag manifold, and representations of ðºð¿(ð) J. Algebra 1979 414 462
Cité par Sources :
