@article{10_1090_S0894_0347_01_00382_4,
author = {Gorelik, Maria},
title = {Annihilation {Theorem} and {Separation} {Theorem} for basic classical {Lie} superalgebras},
journal = {Journal of the American Mathematical Society},
pages = {113--165},
year = {2002},
volume = {15},
number = {1},
doi = {10.1090/S0894-0347-01-00382-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00382-4/}
}
TY - JOUR AU - Gorelik, Maria TI - Annihilation Theorem and Separation Theorem for basic classical Lie superalgebras JO - Journal of the American Mathematical Society PY - 2002 SP - 113 EP - 165 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00382-4/ DO - 10.1090/S0894-0347-01-00382-4 ID - 10_1090_S0894_0347_01_00382_4 ER -
%0 Journal Article %A Gorelik, Maria %T Annihilation Theorem and Separation Theorem for basic classical Lie superalgebras %J Journal of the American Mathematical Society %D 2002 %P 113-165 %V 15 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00382-4/ %R 10.1090/S0894-0347-01-00382-4 %F 10_1090_S0894_0347_01_00382_4
Gorelik, Maria. Annihilation Theorem and Separation Theorem for basic classical Lie superalgebras. Journal of the American Mathematical Society, Tome 15 (2002) no. 1, pp. 113-165. doi: 10.1090/S0894-0347-01-00382-4
[1] , Zero divisors in enveloping algebras of graded Lie algebras J. Pure Appl. Algebra 1985 159 166
[2] , On the theory of Frobenius extensions and its application to Lie superalgebras Trans. Amer. Math. Soc. 1993 407 424
[3] , A simple proof of Kostant’s theorem that 𝑈(𝔤) is free over its center Amer. J. Math. 1996 979 987
[4] , , 𝑃𝑆𝐿(𝑛|𝑛) sigma model as a conformal field theory Nuclear Phys. B 1999 205 234
[5] Construction of primitive ideals in an enveloping algebra 1975 77 93
[6] , The annihilation theorem for the completely reducible Lie superalgebras Invent. Math. 1999 651 680
[7] , The minimal primitive spectrum of the enveloping algebra of the Lie superalgebra 𝑜𝑠𝑝(1,2𝑙) Adv. Math. 2000 333 366
[8] Einhüllende Algebren halbeinfacher Lie-Algebren 1983
[9] Kostant’s problem, Goldie rank and the Gel′fand-Kirillov conjecture Invent. Math. 1980 191 213
[10] Quantum groups and their primitive ideals 1995
[11] Sur l’annulateur d’un module de Verma 1998 237 300
[12] , Verma module annihilators for quantized enveloping algebras Ann. Sci. École Norm. Sup. (4) 1995 493 526
[13] Lie superalgebras Advances in Math. 1977 8 96
[14] Characters of typical representations of classical Lie superalgebras Comm. Algebra 1977 889 897
[15] Representations of classical Lie superalgebras 1978 597 626
[16] Lie group representations on polynomial rings Amer. J. Math. 1963 327 404
[17] , Complete sets of representations of classical Lie superalgebras Lett. Math. Phys. 1994 247 253
[18] Homology 1963
[19] On the center of the enveloping algebra of a classical simple Lie superalgebra J. Algebra 1997 75 101
[20] A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra Adv. Math. 1992 252 268
[21] , , Representations of complex semi-simple Lie groups and Lie algebras Ann. of Math. (2) 1967 383 429
[22] , Representations of classical Lie superalgebras of type 𝐼 Indag. Math. (N.S.) 1992 419 466
[23] , Generic irreducible representations of finite-dimensional Lie superalgebras Internat. J. Math. 1994 389 419
[24] The theory of Lie superalgebras 1979
[25] Invariant polynomial functions on Lie superalgebras C. R. Acad. Bulgare Sci. 1982 573 576
Cité par Sources :