Annihilation Theorem and Separation Theorem for basic classical Lie superalgebras
Journal of the American Mathematical Society, Tome 15 (2002) no. 1, pp. 113-165 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

In this article we prove that for a basic classical Lie superalgebra the annihilator of a strongly typical Verma module is a centrally generated ideal. For a basic classical Lie superalgebra of type I we prove that the localization of the enveloping algebra by a certain central element is free over its centre.
DOI : 10.1090/S0894-0347-01-00382-4

Gorelik, Maria 1

1 Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
@article{10_1090_S0894_0347_01_00382_4,
     author = {Gorelik, Maria},
     title = {Annihilation {Theorem} and {Separation} {Theorem} for basic classical {Lie} superalgebras},
     journal = {Journal of the American Mathematical Society},
     pages = {113--165},
     year = {2002},
     volume = {15},
     number = {1},
     doi = {10.1090/S0894-0347-01-00382-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00382-4/}
}
TY  - JOUR
AU  - Gorelik, Maria
TI  - Annihilation Theorem and Separation Theorem for basic classical Lie superalgebras
JO  - Journal of the American Mathematical Society
PY  - 2002
SP  - 113
EP  - 165
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00382-4/
DO  - 10.1090/S0894-0347-01-00382-4
ID  - 10_1090_S0894_0347_01_00382_4
ER  - 
%0 Journal Article
%A Gorelik, Maria
%T Annihilation Theorem and Separation Theorem for basic classical Lie superalgebras
%J Journal of the American Mathematical Society
%D 2002
%P 113-165
%V 15
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00382-4/
%R 10.1090/S0894-0347-01-00382-4
%F 10_1090_S0894_0347_01_00382_4
Gorelik, Maria. Annihilation Theorem and Separation Theorem for basic classical Lie superalgebras. Journal of the American Mathematical Society, Tome 15 (2002) no. 1, pp. 113-165. doi: 10.1090/S0894-0347-01-00382-4

[1] Aubry, Marc, Lemaire, Jean-Michel Zero divisors in enveloping algebras of graded Lie algebras J. Pure Appl. Algebra 1985 159 166

[2] Bell, Allen D., Farnsteiner, Rolf On the theory of Frobenius extensions and its application to Lie superalgebras Trans. Amer. Math. Soc. 1993 407 424

[3] Bernstein, Joseph, Lunts, Valery A simple proof of Kostant’s theorem that 𝑈(𝔤) is free over its center Amer. J. Math. 1996 979 987

[4] Bershadsky, Michael, Zhukov, Slava, Vaintrob, Arkady 𝑃𝑆𝐿(𝑛|𝑛) sigma model as a conformal field theory Nuclear Phys. B 1999 205 234

[5] Duflo, Michel Construction of primitive ideals in an enveloping algebra 1975 77 93

[6] Gorelik, Maria, Lanzmann, Emmanuel The annihilation theorem for the completely reducible Lie superalgebras Invent. Math. 1999 651 680

[7] Gorelik, Maria, Lanzmann, Emmanuel The minimal primitive spectrum of the enveloping algebra of the Lie superalgebra 𝑜𝑠𝑝(1,2𝑙) Adv. Math. 2000 333 366

[8] Jantzen, Jens Carsten Einhüllende Algebren halbeinfacher Lie-Algebren 1983

[9] Joseph, A. Kostant’s problem, Goldie rank and the Gel′fand-Kirillov conjecture Invent. Math. 1980 191 213

[10] Joseph, Anthony Quantum groups and their primitive ideals 1995

[11] Joseph, Anthony Sur l’annulateur d’un module de Verma 1998 237 300

[12] Joseph, Anthony, Letzter, Gail Verma module annihilators for quantized enveloping algebras Ann. Sci. École Norm. Sup. (4) 1995 493 526

[13] Kac, V. G. Lie superalgebras Advances in Math. 1977 8 96

[14] Kac, V. G. Characters of typical representations of classical Lie superalgebras Comm. Algebra 1977 889 897

[15] Kac, V. Representations of classical Lie superalgebras 1978 597 626

[16] Kostant, Bertram Lie group representations on polynomial rings Amer. J. Math. 1963 327 404

[17] Letzter, Edward S., Musson, Ian M. Complete sets of representations of classical Lie superalgebras Lett. Math. Phys. 1994 247 253

[18] Mac Lane, Saunders Homology 1963

[19] Musson, Ian M. On the center of the enveloping algebra of a classical simple Lie superalgebra J. Algebra 1997 75 101

[20] Musson, Ian M. A classification of primitive ideals in the enveloping algebra of a classical simple Lie superalgebra Adv. Math. 1992 252 268

[21] Parthasarathy, K. R., Ranga Rao, R., Varadarajan, V. S. Representations of complex semi-simple Lie groups and Lie algebras Ann. of Math. (2) 1967 383 429

[22] Penkov, Ivan, Serganova, Vera Representations of classical Lie superalgebras of type 𝐼 Indag. Math. (N.S.) 1992 419 466

[23] Penkov, Ivan, Serganova, Vera Generic irreducible representations of finite-dimensional Lie superalgebras Internat. J. Math. 1994 389 419

[24] Scheunert, Manfred The theory of Lie superalgebras 1979

[25] Sergeev, A. N. Invariant polynomial functions on Lie superalgebras C. R. Acad. Bulgare Sci. 1982 573 576

Cité par Sources :