Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture
Journal of the American Mathematical Society, Tome 15 (2002) no. 1, pp. 77-111 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

Given an Iterated Function System (IFS) of topical maps verifying some conditions, we prove that the asymptotic height optimization problems are equivalent to finding the extrema of a continuous functional, the average height, on some compact space of measures. We give general results to determine these extrema, and then apply them to two concrete problems. First, we give a new proof of the theorem that the densest heaps of two Tetris pieces are sturmian. Second, we construct an explicit counterexample to the Lagarias-Wang finiteness conjecture for the joint spectral radius of a set of matrices. Résumé. Etant donné un système itéré de fonctions (IFS) topicales, vérifiant certaines conditions, nous montrons que les questions d’optimisation asymptotique de la hauteur sont équivalentes à la recherche des extrema d’une fonctionnelle continue, la hauteur moyenne, sur un certain espace compact de mesures. Nous présentons des résultats généraux permettant de déterminer ces extrema, puis appliquons ces méthodes à deux problèmes concrets. Premièrement, nous redémontrons que les empilements les plus denses de deux pièces de Tetris sont sturmiens. Deuxièmement, nous construisons un contre-exemple effectif à la conjecture de finitude de Lagarias et Wang sur le rayon spectral joint d’un ensemble de matrices.
DOI : 10.1090/S0894-0347-01-00378-2

Bousch, Thierry 1 ; Mairesse, Jean 2

1 Laboratoire de Mathématique (UMR 8628 du CNRS), bât. 425, Université de Paris-Sud, 91405 Orsay Cedex, France
2 LIAFA, CNRS et Université Paris 7, case 7014, 2 place Jussieu, 75251 Paris Cedex 05, France
@article{10_1090_S0894_0347_01_00378_2,
     author = {Bousch, Thierry and Mairesse, Jean},
     title = {Asymptotic height optimization for topical {IFS,} {Tetris} heaps, and the finiteness conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {77--111},
     year = {2002},
     volume = {15},
     number = {1},
     doi = {10.1090/S0894-0347-01-00378-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00378-2/}
}
TY  - JOUR
AU  - Bousch, Thierry
AU  - Mairesse, Jean
TI  - Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture
JO  - Journal of the American Mathematical Society
PY  - 2002
SP  - 77
EP  - 111
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00378-2/
DO  - 10.1090/S0894-0347-01-00378-2
ID  - 10_1090_S0894_0347_01_00378_2
ER  - 
%0 Journal Article
%A Bousch, Thierry
%A Mairesse, Jean
%T Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture
%J Journal of the American Mathematical Society
%D 2002
%P 77-111
%V 15
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00378-2/
%R 10.1090/S0894-0347-01-00378-2
%F 10_1090_S0894_0347_01_00378_2
Bousch, Thierry; Mairesse, Jean. Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture. Journal of the American Mathematical Society, Tome 15 (2002) no. 1, pp. 77-111. doi: 10.1090/S0894-0347-01-00378-2

[1] Aliprantis, Charalambos D., Border, Kim C. Infinite-dimensional analysis 1999

[2] Baccelli, François Louis, Cohen, Guy, Olsder, Geert Jan, Quadrat, Jean-Pierre Synchronization and linearity 1992

[3] Berger, Marc A., Wang, Yang Bounded semigroups of matrices Linear Algebra Appl. 1992 21 27

[4] Brilman, Matthieu, Vincent, Jean-Marc Dynamics of synchronized parallel systems Comm. Statist. Stochastic Models 1997 605 617

[5] Bullett, Shaun, Sentenac, Pierrette Ordered orbits of the shift, square roots, and the devil’s staircase Math. Proc. Cambridge Philos. Soc. 1994 451 481

[6] Carlson, D. A., Haurie, A. Infinite horizon optimal control 1987

[7] Cohen, Guy, Dubois, Didier, Quadrat, Jean-Pierre, Viot, Michel A linear-system-theoretic view of discrete-event processes and its use for performance evaluation in manufacturing IEEE Trans. Automat. Control 1985 210 220

[8] Random matrices and their applications 1986

[9] Crandall, Michael G., Tartar, Luc Some relations between nonexpansive and order preserving mappings Proc. Amer. Math. Soc. 1980 385 390

[10] Daubechies, Ingrid, Lagarias, Jeffrey C. Sets of matrices all infinite products of which converge Linear Algebra Appl. 1992 227 263

[11] Denker, Manfred, Grillenberger, Christian, Sigmund, Karl Ergodic theory on compact spaces 1976

[12] Fathi, Albert Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens C. R. Acad. Sci. Paris Sér. I Math. 1997 1043 1046

[13] Gaubert, Stéphane Performance evaluation of (max,+) automata IEEE Trans. Automat. Control 1995 2014 2025

[14] Idempotency 1998

[15] Gaubert, Stéphane, Mairesse, Jean Modeling and analysis of timed Petri nets using heaps of pieces IEEE Trans. Automat. Control 1999 683 697

[16] Idempotency 1998

[17] Gurvits, Leonid Stability of discrete linear inclusion Linear Algebra Appl. 1995 47 85

[18] Jenkinson, Oliver Frequency locking on the boundary of the barycentre set Experiment. Math. 2000 309 317

[19] Lagarias, Jeffrey C., Wang, Yang The finiteness conjecture for the generalized spectral radius of a set of matrices Linear Algebra Appl. 1995 17 42

[20] Mañé, Ricardo Introdução à teoria ergódica 1983

[21] Mañé, Ricardo Generic properties and problems of minimizing measures of Lagrangian systems Nonlinearity 1996 273 310

[22] Venkatarayudu, T. The 7-15 problem Proc. Indian Acad. Sci., Sect. A. 1939 531

[23] Idempotency 1998

[24] Rota, Gian-Carlo, Strang, Gilbert A note on the joint spectral radius Indag. Math. 1960 379 381

[25] Simon, Imre The nondeterministic complexity of a finite automaton 1990 384 400

[26] Graves, Lawrence M. The Weierstrass condition for multiple integral variation problems Duke Math. J. 1939 656 660

Cité par Sources :