Locally analytic distributions and 𝑝-adic representation theory, with applications to 𝐺𝐿₂
Journal of the American Mathematical Society, Tome 15 (2002) no. 2, pp. 443-468

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper we study continuous representations of locally $L$-analytic groups $G$ in locally convex $K$-vector spaces, where $L$ is a finite extension of $\mathbb {Q}_p$ and $K$ is a spherically complete nonarchimedean extension field of $L$. The class of such representations includes both the smooth representations of Langlands theory and the finite dimensional algebraic representations of $G$, along with interesting new objects such as the action of $G$ on global sections of equivariant vector bundles on $p$-adic symmetric spaces. We introduce a restricted category of such representations that we call “strongly admissible” and we show that, when $G$ is compact, our category is anti-equivalent to a subcategory of the category of modules over the locally analytic distribution algebra of $G$. As an application we prove the topological irreducibility of generic members of the $p$-adic principal series for $GL_2(\mathbb {Q}_p)$. Our hope is that our definition of strongly admissible representation may be used as a foundation for a general theory of continuous $K$-valued representations of locally $L$-analytic groups.
DOI : 10.1090/S0894-0347-01-00377-0

Schneider, Peter 1 ; Teitelbaum, Jeremy 2

1 Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, D-48149 Münster, Germany
2 Department of Mathematics, Statistics, and Computer Science (M/C 249), University of Illinois at Chicago, 851 S. Morgan St., Chicago, Illinois 60607
@article{10_1090_S0894_0347_01_00377_0,
     author = {Schneider, Peter and Teitelbaum, Jeremy},
     title = {Locally analytic distributions and {\dh}‘-adic representation theory, with applications to {\dh}{\textordmasculine}{\dh}{\textquestiondown}\^a‚‚},
     journal = {Journal of the American Mathematical Society},
     pages = {443--468},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2002},
     doi = {10.1090/S0894-0347-01-00377-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00377-0/}
}
TY  - JOUR
AU  - Schneider, Peter
AU  - Teitelbaum, Jeremy
TI  - Locally analytic distributions and 𝑝-adic representation theory, with applications to 𝐺𝐿₂
JO  - Journal of the American Mathematical Society
PY  - 2002
SP  - 443
EP  - 468
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00377-0/
DO  - 10.1090/S0894-0347-01-00377-0
ID  - 10_1090_S0894_0347_01_00377_0
ER  - 
%0 Journal Article
%A Schneider, Peter
%A Teitelbaum, Jeremy
%T Locally analytic distributions and 𝑝-adic representation theory, with applications to 𝐺𝐿₂
%J Journal of the American Mathematical Society
%D 2002
%P 443-468
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00377-0/
%R 10.1090/S0894-0347-01-00377-0
%F 10_1090_S0894_0347_01_00377_0
Schneider, Peter; Teitelbaum, Jeremy. Locally analytic distributions and 𝑝-adic representation theory, with applications to 𝐺𝐿₂. Journal of the American Mathematical Society, Tome 15 (2002) no. 2, pp. 443-468. doi: 10.1090/S0894-0347-01-00377-0

[1] Amice, Yvette Interpolation 𝑝-adique Bull. Soc. Math. France 1964 117 180

[2] Amice, Yvette Duals 1978 1 15

[3] Bonder, Julian Über die Darstellung gewisser, in der Theorie der Flügelschwingungen auftretender Integrale durch Zylinderfunktionen Z. Angew. Math. Mech. 1939 251 252

[4] Bourbaki, N. Topological vector spaces. Chapters 1–5 1987

[5] Bourbaki, N. Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7) 1967 97

[6] De Grande-De Kimpe, N., Kakol, J., Perez-Garcia, C., Schikhof, W. H. 𝑝-adic locally convex inductive limits 1997 159 222

[7] Demazure, Michel, Gabriel, Pierre Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs 1970

[8] Gruson, Laurent Théorie de Fredholm 𝑝-adique Bull. Soc. Math. France 1966 67 95

[9] Corliss, J. J. Upper limits to the real roots of a real algebraic equation Amer. Math. Monthly 1939 334 338

[10] Jantzen, Jens Carsten Representations of algebraic groups 1987

[11] Komatsu, Hikosaburo Projective and injective limits of weakly compact sequences of locally convex spaces J. Math. Soc. Japan 1967 366 383

[12] Lazard, Michel Les zéros des fonctions analytiques d’une variable sur un corps valué complet Inst. Hautes Études Sci. Publ. Math. 1962 47 75

[13] Morita, Yasuo Analytic representations of 𝑆𝐿₂ over a 𝔭-adic number field. III 1985 185 222

[14] Miller, G. A. Groups which contain ten or eleven proper subgroups Proc. Nat. Acad. Sci. U.S.A. 1939 540 543

[15] Van Tiel, J. Ensembles pseudo-polaires dans les espaces localement 𝐾-convexes Indag. Math. 1966 369 373

Cité par Sources :