Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs
Journal of the American Mathematical Society, Tome 15 (2002) no. 1, pp. 1-26 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

Given two densities on $\mathbf {R}^n$ with the same total mass, the Monge transport problem is to find a Borel map $s:\mathbf {R}^n \to \mathbf {R}^n$ rearranging the first distribution of mass onto the second, while minimizing the average distance transported. Here distance is measured by a norm with a uniformly smooth and convex unit ball. This paper gives a complete proof of the existence of optimal maps under the technical hypothesis that the distributions of mass be compactly supported. The maps are not generally unique. The approach developed here is new, and based on a geometrical change-of-variables technique offering considerably more flexibility than existing approaches.
DOI : 10.1090/S0894-0347-01-00376-9

Caffarelli, Luis 1 ; Feldman, Mikhail 2 ; McCann, Robert 3

1 Department of Mathematics, University of Texas at Austin, Austin, Texas 78712-1082
2 Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
3 Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
@article{10_1090_S0894_0347_01_00376_9,
     author = {Caffarelli, Luis and Feldman, Mikhail and McCann, Robert},
     title = {Constructing optimal maps for {Monge{\textquoteright}s} transport problem as a limit of strictly convex costs},
     journal = {Journal of the American Mathematical Society},
     pages = {1--26},
     year = {2002},
     volume = {15},
     number = {1},
     doi = {10.1090/S0894-0347-01-00376-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00376-9/}
}
TY  - JOUR
AU  - Caffarelli, Luis
AU  - Feldman, Mikhail
AU  - McCann, Robert
TI  - Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs
JO  - Journal of the American Mathematical Society
PY  - 2002
SP  - 1
EP  - 26
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00376-9/
DO  - 10.1090/S0894-0347-01-00376-9
ID  - 10_1090_S0894_0347_01_00376_9
ER  - 
%0 Journal Article
%A Caffarelli, Luis
%A Feldman, Mikhail
%A McCann, Robert
%T Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs
%J Journal of the American Mathematical Society
%D 2002
%P 1-26
%V 15
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00376-9/
%R 10.1090/S0894-0347-01-00376-9
%F 10_1090_S0894_0347_01_00376_9
Caffarelli, Luis; Feldman, Mikhail; McCann, Robert. Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. Journal of the American Mathematical Society, Tome 15 (2002) no. 1, pp. 1-26. doi: 10.1090/S0894-0347-01-00376-9

[1] Ball, Keith, Carlen, Eric A., Lieb, Elliott H. Sharp uniform convexity and smoothness inequalities for trace norms Invent. Math. 1994 463 482

[2] Caffarelli, Luis A. Allocation maps with general cost functions 1996 29 35

[3] Evans, Lawrence C. Partial differential equations and Monge-Kantorovich mass transfer 1999 65 126

[4] Evans, Lawrence C. Partial differential equations 1998

[5] Evans, L. C., Gangbo, W. Differential equations methods for the Monge-Kantorovich mass transfer problem Mem. Amer. Math. Soc. 1999

[6] Evans, Lawrence C., Gariepy, Ronald F. Measure theory and fine properties of functions 1992

[7] Federer, Herbert Geometric measure theory 1969

[8] Federer, Herbert Curvature measures Trans. Amer. Math. Soc. 1959 418 491

[9] Feldman, Mikhail Variational evolution problems and nonlocal geometric motion Arch. Ration. Mech. Anal. 1999 221 274

[10] Gangbo, Wilfrid, Mccann, Robert J. Optimal maps in Monge’s mass transport problem C. R. Acad. Sci. Paris Sér. I Math. 1995 1653 1658

[11] Gangbo, Wilfrid, Mccann, Robert J. The geometry of optimal transportation Acta Math. 1996 113 161

[12] Sispanov, Sergio Generalización del teorema de Laguerre Bol. Mat. 1939 113 117

[13] Graves, Lawrence M. The Weierstrass condition for multiple integral variation problems Duke Math. J. 1939 656 660

[14] Rudin, Walter Real and complex analysis 1987

[15] Sudakov, V. N. Geometric problems in the theory of infinite-dimensional probability distributions Proc. Steklov Inst. Math. 1979

Cité par Sources :