Caffarelli, Luis 1 ; Feldman, Mikhail 2 ; McCann, Robert 3
@article{10_1090_S0894_0347_01_00376_9,
author = {Caffarelli, Luis and Feldman, Mikhail and McCann, Robert},
title = {Constructing optimal maps for {Monge{\textquoteright}s} transport problem as a limit of strictly convex costs},
journal = {Journal of the American Mathematical Society},
pages = {1--26},
year = {2002},
volume = {15},
number = {1},
doi = {10.1090/S0894-0347-01-00376-9},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00376-9/}
}
TY - JOUR AU - Caffarelli, Luis AU - Feldman, Mikhail AU - McCann, Robert TI - Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs JO - Journal of the American Mathematical Society PY - 2002 SP - 1 EP - 26 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00376-9/ DO - 10.1090/S0894-0347-01-00376-9 ID - 10_1090_S0894_0347_01_00376_9 ER -
%0 Journal Article %A Caffarelli, Luis %A Feldman, Mikhail %A McCann, Robert %T Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs %J Journal of the American Mathematical Society %D 2002 %P 1-26 %V 15 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00376-9/ %R 10.1090/S0894-0347-01-00376-9 %F 10_1090_S0894_0347_01_00376_9
Caffarelli, Luis; Feldman, Mikhail; McCann, Robert. Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. Journal of the American Mathematical Society, Tome 15 (2002) no. 1, pp. 1-26. doi: 10.1090/S0894-0347-01-00376-9
[1] , , Sharp uniform convexity and smoothness inequalities for trace norms Invent. Math. 1994 463 482
[2] Allocation maps with general cost functions 1996 29 35
[3] Partial differential equations and Monge-Kantorovich mass transfer 1999 65 126
[4] Partial differential equations 1998
[5] , Differential equations methods for the Monge-Kantorovich mass transfer problem Mem. Amer. Math. Soc. 1999
[6] , Measure theory and fine properties of functions 1992
[7] Geometric measure theory 1969
[8] Curvature measures Trans. Amer. Math. Soc. 1959 418 491
[9] Variational evolution problems and nonlocal geometric motion Arch. Ration. Mech. Anal. 1999 221 274
[10] , Optimal maps in Monge’s mass transport problem C. R. Acad. Sci. Paris Sér. I Math. 1995 1653 1658
[11] , The geometry of optimal transportation Acta Math. 1996 113 161
[12] Generalización del teorema de Laguerre Bol. Mat. 1939 113 117
[13] The Weierstrass condition for multiple integral variation problems Duke Math. J. 1939 656 660
[14] Real and complex analysis 1987
[15] Geometric problems in the theory of infinite-dimensional probability distributions Proc. Steklov Inst. Math. 1979
Cité par Sources :