Complex Brjuno functions
Journal of the American Mathematical Society, Tome 14 (2001) no. 4, pp. 783-841

Voir la notice de l'article provenant de la source American Mathematical Society

The Brjuno function arises naturally in the study of analytic small divisors problems in one dimension. It belongs to $\hbox {BMO}({\mathbb {T}}^{1})$ and it is stable under Hölder perturbations. It is related to the size of Siegel disks by various rigorous and conjectural results. In this work we show how to extend the Brjuno function to a holomorphic function on ${\mathbb {H}}/{\mathbb {Z}}$, the complex Brjuno function. This has an explicit expression in terms of a series of transformed dilogarithms under the action of the modular group. The extension is obtained using a complex analogue of the continued fraction expansion of a real number. Since our method is based on the use of hyperfunctions, it applies to less regular functions than the Brjuno function and it is quite general. We prove that the harmonic conjugate of the Brjuno function is bounded. Its trace on ${\mathbb {R}}/{\mathbb {Z}}$ is continuous at all irrational points and has a jump of $\pi /q$ at each rational point $p/q\in {\mathbb {Q}}$.
DOI : 10.1090/S0894-0347-01-00371-X

Marmi, Stefano 1, 2 ; Moussa, Pierre 3 ; Yoccoz, Jean-Christophe 4

1 Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, Loc. Rizzi, I-33100 Udine, Italy
2 Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
3 Service de Physique Théorique, CEA/Saclay, 91191 Gif-Sur-Yvette, France
4 Collège de France, 3 Rue d’Ulm, F-75005 Paris, France, and Université de Paris-Sud, Mathématiques, Batiment 425, F-91405 Orsay, France
@article{10_1090_S0894_0347_01_00371_X,
     author = {Marmi, Stefano and Moussa, Pierre and Yoccoz, Jean-Christophe},
     title = {Complex {Brjuno} functions},
     journal = {Journal of the American Mathematical Society},
     pages = {783--841},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2001},
     doi = {10.1090/S0894-0347-01-00371-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00371-X/}
}
TY  - JOUR
AU  - Marmi, Stefano
AU  - Moussa, Pierre
AU  - Yoccoz, Jean-Christophe
TI  - Complex Brjuno functions
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 783
EP  - 841
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00371-X/
DO  - 10.1090/S0894-0347-01-00371-X
ID  - 10_1090_S0894_0347_01_00371_X
ER  - 
%0 Journal Article
%A Marmi, Stefano
%A Moussa, Pierre
%A Yoccoz, Jean-Christophe
%T Complex Brjuno functions
%J Journal of the American Mathematical Society
%D 2001
%P 783-841
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00371-X/
%R 10.1090/S0894-0347-01-00371-X
%F 10_1090_S0894_0347_01_00371_X
Marmi, Stefano; Moussa, Pierre; Yoccoz, Jean-Christophe. Complex Brjuno functions. Journal of the American Mathematical Society, Tome 14 (2001) no. 4, pp. 783-841. doi: 10.1090/S0894-0347-01-00371-X

[1] Berretti, A., Gentile, G. Scaling properties for the radius of convergence of a Lindstedt series: the standard map J. Math. Pures Appl. (9) 1999 159 176

[2] Buric, N., Percival, I. C., Vivaldi, F. Critical function and modular smoothing Nonlinearity 1990 21 37

[3] Transactions of the Moscow Mathematical Society for the year 1971 (Vol. 25) 1973

[4] Transactions of the Moscow Mathematical Society for the year 1971 (Vol. 25) 1973

[5] Davie, A. M. The critical function for the semistandard map Nonlinearity 1994 219 229

[6] Duren, Peter L. Theory of 𝐻^{𝑝} spaces 1970

[7] Garnett, John B. Bounded analytic functions 1981

[8] Garcã­A-Cuerva, Josã©, Rubio De Francia, Josã© L. Weighted norm inequalities and related topics 1985

[9] Hardy, G. H., Wright, E. M. An introduction to the theory of numbers 1979

[10] Hã¶Rmander, Lars The analysis of linear partial differential operators. I 1983

[11] Denjoy, Arnaud Sur certaines séries de Taylor admettant leur cercle de convergence comme coupure essentielle C. R. Acad. Sci. Paris 1939 373 374

[12] Katok, Anatole, Hasselblatt, Boris Introduction to the modern theory of dynamical systems 1995

[13] Lewin, Leonard Polylogarithms and associated functions 1981

[14] Marmi, Stefano Critical functions for complex analytic maps J. Phys. A 1990 3447 3474

[15] Marmi, S., Moussa, P., Yoccoz, J.-C. The Brjuno functions and their regularity properties Comm. Math. Phys. 1997 265 293

[16] Oesterlã©, Joseph Polylogarithmes Astérisque 1993

[17] Corliss, J. J. Upper limits to the real roots of a real algebraic equation Amer. Math. Monthly 1939 334 338

[18] Serre, Jean-Pierre Cohomologie Galoisienne 1973

[19] Stein, Elias M. Singular integrals and differentiability properties of functions 1970

[20] Yoccoz, Jean-Christophe Théorème de Siegel, nombres de Bruno et polynômes quadratiques Astérisque 1995 3 88

[21] Yoccoz, Jean-Christophe An introduction to small divisors problems 1992 659 679

Cité par Sources :