Existence of blow-up solutions in the energy space for the critical generalized KdV equation
Journal of the American Mathematical Society, Tome 14 (2001) no. 3, pp. 555-578 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

For the critical generalized Korteweg–de Vries equation, we establish blow-up in finite or infinite time in $H^1(\mathbf R)$ for initial data with negative energy, close to a soliton up to scaling and translation.
DOI : 10.1090/S0894-0347-01-00369-1

Merle, Frank 1

1 Département de Mathématiques, Université de Cergy–Pontoise, 2, avenue Adolphe Chauvin, BP 222, 95302 Cergy–Pontoise, France
@article{10_1090_S0894_0347_01_00369_1,
     author = {Merle, Frank},
     title = {Existence of blow-up solutions in the energy space for the critical generalized {KdV} equation},
     journal = {Journal of the American Mathematical Society},
     pages = {555--578},
     year = {2001},
     volume = {14},
     number = {3},
     doi = {10.1090/S0894-0347-01-00369-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00369-1/}
}
TY  - JOUR
AU  - Merle, Frank
TI  - Existence of blow-up solutions in the energy space for the critical generalized KdV equation
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 555
EP  - 578
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00369-1/
DO  - 10.1090/S0894-0347-01-00369-1
ID  - 10_1090_S0894_0347_01_00369_1
ER  - 
%0 Journal Article
%A Merle, Frank
%T Existence of blow-up solutions in the energy space for the critical generalized KdV equation
%J Journal of the American Mathematical Society
%D 2001
%P 555-578
%V 14
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00369-1/
%R 10.1090/S0894-0347-01-00369-1
%F 10_1090_S0894_0347_01_00369_1
Merle, Frank. Existence of blow-up solutions in the energy space for the critical generalized KdV equation. Journal of the American Mathematical Society, Tome 14 (2001) no. 3, pp. 555-578. doi: 10.1090/S0894-0347-01-00369-1

[1] Bona, J. L., Dougalis, V. A., Karakashian, O. A., Mckinney, W. R. Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation Philos. Trans. Roy. Soc. London Ser. A 1995 107 164

[2] Bona, J. L., Souganidis, P. E., Strauss, W. A. Stability and instability of solitary waves of Korteweg-de Vries type Proc. Roy. Soc. London Ser. A 1987 395 412

[3] Bourgain, Jean Harmonic analysis and nonlinear partial differential equations 1995 31 44

[4] Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations Geom. Funct. Anal. 1993 107 156

[5] Cazenave, T., Lions, P.-L. Orbital stability of standing waves for some nonlinear Schrödinger equations Comm. Math. Phys. 1982 549 561

[6] Gidas, B., Ni, Wei Ming, Nirenberg, L. Symmetry and related properties via the maximum principle Comm. Math. Phys. 1979 209 243

[7] Gidas, B., Spruck, J. A priori bounds for positive solutions of nonlinear elliptic equations Comm. Partial Differential Equations 1981 883 901

[8] Ginibre, J., Tsutsumi, Y. Uniqueness of solutions for the generalized Korteweg-de Vries equation SIAM J. Math. Anal. 1989 1388 1425

[9] Grillakis, Manoussos, Shatah, Jalal, Strauss, Walter Stability theory of solitary waves in the presence of symmetry. I J. Funct. Anal. 1987 160 197

[10] Kato, Tosio On the Cauchy problem for the (generalized) Korteweg-de Vries equation 1983 93 128

[11] Kenig, Carlos E., Ponce, Gustavo, Vega, Luis Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle Comm. Pure Appl. Math. 1993 527 620

[12] Lax, Peter D. Integrals of nonlinear equations of evolution and solitary waves Comm. Pure Appl. Math. 1968 467 490

[13] Merle, Frank Asymptotics for 𝐿² minimal blow-up solutions of critical nonlinear Schrödinger equation Ann. Inst. H. Poincaré C Anal. Non Linéaire 1996 553 565

[14] Merle, Frank Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations Doc. Math. 1998 57 66

[15] Pego, Robert L., Weinstein, Michael I. Asymptotic stability of solitary waves Comm. Math. Phys. 1994 305 349

[16] Schechter, Martin Spectra of partial differential operators 1986

[17] Soffer, A., Weinstein, M. I. Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations Invent. Math. 1999 9 74

[18] Collar, A. R. On the reciprocation of certain matrices Proc. Roy. Soc. Edinburgh 1939 195 206

[19] Weinstein, Michael I. Nonlinear Schrödinger equations and sharp interpolation estimates Comm. Math. Phys. 1982/83 567 576

[20] Weinstein, Michael I. Modulational stability of ground states of nonlinear Schrödinger equations SIAM J. Math. Anal. 1985 472 491

[21] Weinstein, Michael I. Lyapunov stability of ground states of nonlinear dispersive evolution equations Comm. Pure Appl. Math. 1986 51 67

[22] Zakharov, V. E., Shabat, A. B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media Ž. Èksper. Teoret. Fiz. 1971 118 134

Cité par Sources :