@article{10_1090_S0894_0347_01_00369_1,
author = {Merle, Frank},
title = {Existence of blow-up solutions in the energy space for the critical generalized {KdV} equation},
journal = {Journal of the American Mathematical Society},
pages = {555--578},
year = {2001},
volume = {14},
number = {3},
doi = {10.1090/S0894-0347-01-00369-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00369-1/}
}
TY - JOUR AU - Merle, Frank TI - Existence of blow-up solutions in the energy space for the critical generalized KdV equation JO - Journal of the American Mathematical Society PY - 2001 SP - 555 EP - 578 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00369-1/ DO - 10.1090/S0894-0347-01-00369-1 ID - 10_1090_S0894_0347_01_00369_1 ER -
%0 Journal Article %A Merle, Frank %T Existence of blow-up solutions in the energy space for the critical generalized KdV equation %J Journal of the American Mathematical Society %D 2001 %P 555-578 %V 14 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00369-1/ %R 10.1090/S0894-0347-01-00369-1 %F 10_1090_S0894_0347_01_00369_1
Merle, Frank. Existence of blow-up solutions in the energy space for the critical generalized KdV equation. Journal of the American Mathematical Society, Tome 14 (2001) no. 3, pp. 555-578. doi: 10.1090/S0894-0347-01-00369-1
[1] , , , Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation Philos. Trans. Roy. Soc. London Ser. A 1995 107 164
[2] , , Stability and instability of solitary waves of Korteweg-de Vries type Proc. Roy. Soc. London Ser. A 1987 395 412
[3] Harmonic analysis and nonlinear partial differential equations 1995 31 44
[4] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations Geom. Funct. Anal. 1993 107 156
[5] , Orbital stability of standing waves for some nonlinear Schrödinger equations Comm. Math. Phys. 1982 549 561
[6] , , Symmetry and related properties via the maximum principle Comm. Math. Phys. 1979 209 243
[7] , A priori bounds for positive solutions of nonlinear elliptic equations Comm. Partial Differential Equations 1981 883 901
[8] , Uniqueness of solutions for the generalized Korteweg-de Vries equation SIAM J. Math. Anal. 1989 1388 1425
[9] , , Stability theory of solitary waves in the presence of symmetry. I J. Funct. Anal. 1987 160 197
[10] On the Cauchy problem for the (generalized) Korteweg-de Vries equation 1983 93 128
[11] , , Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle Comm. Pure Appl. Math. 1993 527 620
[12] Integrals of nonlinear equations of evolution and solitary waves Comm. Pure Appl. Math. 1968 467 490
[13] Asymptotics for 𝐿² minimal blow-up solutions of critical nonlinear Schrödinger equation Ann. Inst. H. Poincaré C Anal. Non Linéaire 1996 553 565
[14] Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations Doc. Math. 1998 57 66
[15] , Asymptotic stability of solitary waves Comm. Math. Phys. 1994 305 349
[16] Spectra of partial differential operators 1986
[17] , Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations Invent. Math. 1999 9 74
[18] On the reciprocation of certain matrices Proc. Roy. Soc. Edinburgh 1939 195 206
[19] Nonlinear Schrödinger equations and sharp interpolation estimates Comm. Math. Phys. 1982/83 567 576
[20] Modulational stability of ground states of nonlinear Schrödinger equations SIAM J. Math. Anal. 1985 472 491
[21] Lyapunov stability of ground states of nonlinear dispersive evolution equations Comm. Pure Appl. Math. 1986 51 67
[22] , Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media Ž. Èksper. Teoret. Fiz. 1971 118 134
Cité par Sources :