The McKay correspondence as an equivalence of derived categories
Journal of the American Mathematical Society, Tome 14 (2001) no. 3, pp. 535-554

Voir la notice de l'article provenant de la source American Mathematical Society

Let $G$ be a finite group of automorphisms of a nonsingular three-dimensional complex variety $M$, whose canonical bundle $\omega _M$ is locally trivial as a $G$-sheaf. We prove that the Hilbert scheme $Y = G$-$\operatorname {Hilb}M$ parametrising $G$-clusters in $M$ is a crepant resolution of $X=M/G$ and that there is a derived equivalence (Fourier–Mukai transform) between coherent sheaves on $Y$ and coherent 𝐺-sheaves on $M$. This identifies the K theory of $Y$ with the equivariant K theory of $M$, and thus generalises the classical McKay correspondence. Some higher-dimensional extensions are possible.
DOI : 10.1090/S0894-0347-01-00368-X

Bridgeland, Tom 1 ; King, Alastair 2 ; Reid, Miles 3

1 Department of Mathematics and Statistics, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
2 Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom
3 Math Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
@article{10_1090_S0894_0347_01_00368_X,
     author = {Bridgeland, Tom and King, Alastair and Reid, Miles},
     title = {The {McKay} correspondence as an equivalence of derived categories},
     journal = {Journal of the American Mathematical Society},
     pages = {535--554},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2001},
     doi = {10.1090/S0894-0347-01-00368-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00368-X/}
}
TY  - JOUR
AU  - Bridgeland, Tom
AU  - King, Alastair
AU  - Reid, Miles
TI  - The McKay correspondence as an equivalence of derived categories
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 535
EP  - 554
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00368-X/
DO  - 10.1090/S0894-0347-01-00368-X
ID  - 10_1090_S0894_0347_01_00368_X
ER  - 
%0 Journal Article
%A Bridgeland, Tom
%A King, Alastair
%A Reid, Miles
%T The McKay correspondence as an equivalence of derived categories
%J Journal of the American Mathematical Society
%D 2001
%P 535-554
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00368-X/
%R 10.1090/S0894-0347-01-00368-X
%F 10_1090_S0894_0347_01_00368_X
Bridgeland, Tom; King, Alastair; Reid, Miles. The McKay correspondence as an equivalence of derived categories. Journal of the American Mathematical Society, Tome 14 (2001) no. 3, pp. 535-554. doi: 10.1090/S0894-0347-01-00368-X

[1] Atiyah, M. F., Hirzebruch, F. The Riemann-Roch theorem for analytic embeddings Topology 1962 151 166

[2] Atiyah, Michael, Segal, Graeme On equivariant Euler characteristics J. Geom. Phys. 1989 671 677

[3] Barth, W., Peters, C., Van De Ven, A. Compact complex surfaces 1984

[4] Bondal, A. I. Representations of associative algebras and coherent sheaves Izv. Akad. Nauk SSSR Ser. Mat. 1989 25 44

[5] Bondal, A. I., Kapranov, M. M. Representable functors, Serre functors, and reconstructions Izv. Akad. Nauk SSSR Ser. Mat. 1989

[6] Bridgeland, Tom Equivalences of triangulated categories and Fourier-Mukai transforms Bull. London Math. Soc. 1999 25 34

[7] Grothendieck, Alexander Sur quelques points d’algèbre homologique Tohoku Math. J. (2) 1957 119 221

[8] Gonzalez-Sprinberg, G., Verdier, J.-L. Construction géométrique de la correspondance de McKay Ann. Sci. École Norm. Sup. (4) 1983

[9] Hartshorne, Robin Residues and duality 1966

[10] Ito, Yukari, Reid, Miles The McKay correspondence for finite subgroups of 𝑆𝐿(3,𝐂) 1996 221 240

[11] Maclane, Saunders Categories for the working mathematician 1971

[12] Mukai, Shigeru Duality between 𝐷(𝑋) and 𝐷(𝑋̂) with its application to Picard sheaves Nagoya Math. J. 1981 153 175

[13] Neeman, Amnon The Grothendieck duality theorem via Bousfield’s techniques and Brown representability J. Amer. Math. Soc. 1996 205 236

[14] Roan, Shi-Shyr Minimal resolutions of Gorenstein orbifolds in dimension three Topology 1996 489 508

[15] Roberts, Paul Intersection theorems 1989 417 436

[16] Roberts, Paul C. Multiplicities and Chern classes in local algebra 1998

[17] Verdier, Jean-Louis Des catégories dérivées des catégories abéliennes Astérisque 1996

Cité par Sources :