Bochner-Kähler metrics
Journal of the American Mathematical Society, Tome 14 (2001) no. 3, pp. 623-715

Voir la notice de l'article provenant de la source American Mathematical Society

A Kähler metric is said to be Bochner-Kähler if its Bochner curvature vanishes. This is a nontrivial condition when the complex dimension of the underlying manifold is at least $2$. In this article it will be shown that, in a certain well-defined sense, the space of Bochner-Kähler metrics in complex dimension $n$ has real dimension $n{+}1$ and a recipe for an explicit formula for any Bochner-Kähler metric will be given. It is shown that any Bochner-Kähler metric in complex dimension $n$ has local (real) cohomogeneity at most $n$. The Bochner-Kähler metrics that can be ‘analytically continued’ to a complete metric, free of singularities, are identified. In particular, it is shown that the only compact Bochner-Kähler manifolds are the discrete quotients of the known symmetric examples. However, there are compact Bochner-Kähler orbifolds that are not locally symmetric. In fact, every weighted projective space carries a Bochner-Kähler metric. The fundamental technique is to construct a canonical infinitesimal torus action on a Bochner-Kähler metric whose associated momentum mapping has the orbits of its symmetry pseudo-groupoid as fibers.
DOI : 10.1090/S0894-0347-01-00366-6

Bryant, Robert 1

1 Department of Mathematics, Duke University, P.O. Box 90320, Durham, North Carolina 27708-0320
@article{10_1090_S0894_0347_01_00366_6,
     author = {Bryant, Robert},
     title = {Bochner-K\~A{\textcurrency}hler metrics},
     journal = {Journal of the American Mathematical Society},
     pages = {623--715},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2001},
     doi = {10.1090/S0894-0347-01-00366-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00366-6/}
}
TY  - JOUR
AU  - Bryant, Robert
TI  - Bochner-Kähler metrics
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 623
EP  - 715
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00366-6/
DO  - 10.1090/S0894-0347-01-00366-6
ID  - 10_1090_S0894_0347_01_00366_6
ER  - 
%0 Journal Article
%A Bryant, Robert
%T Bochner-Kähler metrics
%J Journal of the American Mathematical Society
%D 2001
%P 623-715
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00366-6/
%R 10.1090/S0894-0347-01-00366-6
%F 10_1090_S0894_0347_01_00366_6
Bryant, Robert. Bochner-Kähler metrics. Journal of the American Mathematical Society, Tome 14 (2001) no. 3, pp. 623-715. doi: 10.1090/S0894-0347-01-00366-6

[1] Abreu, Miguel Kähler geometry of toric varieties and extremal metrics Internat. J. Math. 1998 641 651

[2] Besse, Arthur L. Einstein manifolds 1987

[3] Ward, Morgan Ring homomorphisms which are also lattice homomorphisms Amer. J. Math. 1939 783 787

[4] Perlis, Sam Maximal orders in rational cyclic algebras of composite degree Trans. Amer. Math. Soc. 1939 82 96

[5] Chen, Bang-Yen Some topological obstructions to Bochner-Kaehler metrics and their applications J. Differential Geometry 1978

[6] Deprez, Johan, Sekigawa, Kouei, Verstraelen, Leopold Classifications of Kaehler manifolds satisfying some curvature conditions Sci. Rep. Niigata Univ. Ser. A 1988 1 12

[7] Derdziå„Ski, Andrzej Self-dual Kähler manifolds and Einstein manifolds of dimension four Compositio Math. 1983 405 433

[8] Ejiri, Norio Bochner Kähler metrics Bull. Sci. Math. (2) 1984 423 436

[9] Fulton, William, Harris, Joe Representation theory 1991

[10] Guillemin, Victor Kaehler structures on toric varieties J. Differential Geom. 1994 285 309

[11] Helgason, Sigurdur Differential geometry, Lie groups, and symmetric spaces 1978

[12] Kamishima, Yoshinobu Uniformization of Kähler manifolds with vanishing Bochner tensor Acta Math. 1994 299 308

[13] Ki, U-Hang, Kim, Byung Hak Manifolds with Kaehler-Bochner metric Kyungpook Math. J. 1992 285 290

[14] Leysen, J., Petroviä‡-Torgaå¡Ev, M., Verstraelen, L. Some curvature conditions in Bochner-Kaehler manifolds Atti Accad. Peloritana Pericolanti. Cl. Sci. Fis. Mat. Natur. 1987

[15] Kobayashi, Shoshichi, Nomizu, Katsumi Foundations of differential geometry. Vol. II 1969

[16] Mackenzie, Kirill C. H. Lie algebroids and Lie pseudoalgebras Bull. London Math. Soc. 1995 97 147

[17] Matsumoto, Masatsune On Kählerian spaces with parallel or vanishing Bochner curvature tensor Tensor (N.S.) 1969 25 28

[18] Matsumoto, Masatsune, Tanno, Shã»Kichi Kählerian spaces with parallel or vanishing Bochner curvature tensor Tensor (N.S.) 1973 291 294

[19] Pradines, Jean Théorie de Lie pour les groupoïdes différentiables. Calcul différenetiel dans la catégorie des groupoïdes infinitésimaux C. R. Acad. Sci. Paris Sér. A-B 1967

[20] Pradines, Jean Troisième théorème de Lie les groupoïdes différentiables C. R. Acad. Sci. Paris Sér. A-B 1968

[21] Procesi, C. The invariant theory of 𝑛×𝑛 matrices Advances in Math. 1976 306 381

[22] Puå¡Iä‡, Nevena On an invariant tensor of a conformal transformation of a hyperbolic Kaehlerian manifold Zb. Rad. 1990 55 64

[23] Puå¡Iä‡, Nevena On HB-flat hyperbolic Kaehlerian spaces Mat. Vesnik 1997 35 44

[24] Robertson, M. S. The variation of the sign of 𝑉 for an analytic function 𝑈+𝑖𝑉 Duke Math. J. 1939 512 519

[25] Tachibana, Shun-Ichi, Liu, Richard Chieng Notes on Kählerian metrics with vanishing Bochner curvature tensor K\B{o}dai Math. Sem. Rep. 1970 313 321

[26] Takagi, Hitoshi, Watanabe, Yoshiyuki Kählerian manifolds with vanishing Bochner curvature tensor satisfying 𝑅(𝑋,𝑌)⋅𝑅₁ Hokkaido Math. J. 1974 129 132

[27] Van Lindt, Dirk, Verstraelen, Leopold A survey on axioms of submanifolds in Riemannian and Kaehlerian geometry Colloq. Math. 1987 193 213

Cité par Sources :