Chernousov, Vladimir  1 ; Merkurjev, Alexander  2
@article{10_1090_S0894_0347_01_00365_4,
author = {Chernousov, Vladimir and Merkurjev, Alexander},
title = {\ensuremath{\mathit{R}}-equivalence in spinor groups},
journal = {Journal of the American Mathematical Society},
pages = {509--534},
year = {2001},
volume = {14},
number = {3},
doi = {10.1090/S0894-0347-01-00365-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00365-4/}
}
TY - JOUR AU - Chernousov, Vladimir AU - Merkurjev, Alexander TI - 𝑅-equivalence in spinor groups JO - Journal of the American Mathematical Society PY - 2001 SP - 509 EP - 534 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00365-4/ DO - 10.1090/S0894-0347-01-00365-4 ID - 10_1090_S0894_0347_01_00365_4 ER -
%0 Journal Article %A Chernousov, Vladimir %A Merkurjev, Alexander %T 𝑅-equivalence in spinor groups %J Journal of the American Mathematical Society %D 2001 %P 509-534 %V 14 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00365-4/ %R 10.1090/S0894-0347-01-00365-4 %F 10_1090_S0894_0347_01_00365_4
Chernousov, Vladimir; Merkurjev, Alexander. 𝑅-equivalence in spinor groups. Journal of the American Mathematical Society, Tome 14 (2001) no. 3, pp. 509-534. doi: 10.1090/S0894-0347-01-00365-4
[1] Linear algebraic groups 1991
[2] , 𝑅-equivalence and special unitary groups J. Algebra 1998 175 198
[3] , La 𝑅-équivalence sur les tores Ann. Sci. École Norm. Sup. (4) 1977 175 229
[4] , Espaces principaux homogènes localement triviaux Inst. Hautes Études Sci. Publ. Math. 1992 97 122
[5] Skew fields 1983
[6] Un théorème de finitude arithmétique sur les groupes réductifs C. R. Acad. Sci. Paris Sér. I Math. 1993 701 704
[7] La 𝑅-équivalence sur les groupes algébriques réductifs définis sur un corps global Inst. Hautes Études Sci. Publ. Math. 1997
[8] Über eine hypergeometrische Funktion zweier Veränderlichen Monatsh. Math. Phys. 1939 359 379
[9] , , , The book of involutions 1998
[10] , Cubic forms: algebra, geometry, arithmetic 1974
[11] Generic element in 𝑆𝐾₁ for simple algebras 𝐾-Theory 1993 1 3
[12] 𝑅-equivalence and rationality problem for semisimple adjoint classical algebraic groups Inst. Hautes Études Sci. Publ. Math. 1996
[13] 𝐾-theory and algebraic groups 1998 43 72
[14] Invariants of algebraic groups J. Reine Angew. Math. 1999 127 156
[15] , The group of 𝐾₁-zero-cycles on Severi-Brauer varieties Nova J. Algebra Geom. 1992 297 315
[16] Algebraic 𝐾-theory and quadratic forms Invent. Math. 1969/70 318 344
[17] Birational properties of spinor varieties Trudy Mat. Inst. Steklov. 1981
[18] Chow groups with coefficients Doc. Math. 1996
[19] 𝐾-cohomology of regular schemes Comm. Algebra 1979 999 1027
[20] Some theorems on the 𝐾-theory of coherent sheaves Comm. Algebra 1979 1489 1508
[21] 𝑆𝐾₁ of division algebras and Galois cohomology 1991 75 99
[22] 𝐾-theory of quadric hypersurfaces Ann. of Math. (2) 1985 113 153
[23] A variety associated to an algebra with involution J. Algebra 1994 479 520
[24] Algebraicheskie tory 1977 223
[25] Algebras with involutions and the classical groups J. Indian Math. Soc. (N.S.) 1960
Cité par Sources :