Percolation in the hyperbolic plane
Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 487-507

Voir la notice de l'article provenant de la source American Mathematical Society

We study percolation in the hyperbolic plane $\mathbb {H}^2$ and on regular tilings in the hyperbolic plane. The processes discussed include Bernoulli site and bond percolation on planar hyperbolic graphs, invariant dependent percolations on such graphs, and Poisson-Voronoi-Bernoulli percolation. We prove the existence of three distinct nonempty phases for the Bernoulli processes. In the first phase, $p\in (0,p_c]$, there are no unbounded clusters, but there is a unique infinite cluster for the dual process. In the second phase, $p\in (p_c,p_u)$, there are infinitely many unbounded clusters for the process and for the dual process. In the third phase, $p\in [p_u,1)$, there is a unique unbounded cluster, and all the clusters of the dual process are bounded. We also study the dependence of $p_c$ in the Poisson-Voronoi-Bernoulli percolation process on the intensity of the underlying Poisson process.
DOI : 10.1090/S0894-0347-00-00362-3

Benjamini, Itai 1 ; Schramm, Oded 1

1 Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
@article{10_1090_S0894_0347_00_00362_3,
     author = {Benjamini, Itai and Schramm, Oded},
     title = {Percolation in the hyperbolic plane},
     journal = {Journal of the American Mathematical Society},
     pages = {487--507},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2001},
     doi = {10.1090/S0894-0347-00-00362-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00362-3/}
}
TY  - JOUR
AU  - Benjamini, Itai
AU  - Schramm, Oded
TI  - Percolation in the hyperbolic plane
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 487
EP  - 507
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00362-3/
DO  - 10.1090/S0894-0347-00-00362-3
ID  - 10_1090_S0894_0347_00_00362_3
ER  - 
%0 Journal Article
%A Benjamini, Itai
%A Schramm, Oded
%T Percolation in the hyperbolic plane
%J Journal of the American Mathematical Society
%D 2001
%P 487-507
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00362-3/
%R 10.1090/S0894-0347-00-00362-3
%F 10_1090_S0894_0347_00_00362_3
Benjamini, Itai; Schramm, Oded. Percolation in the hyperbolic plane. Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 487-507. doi: 10.1090/S0894-0347-00-00362-3

[1] Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms 1997

[2] Burton, R. M., Keane, M. Density and uniqueness in percolation Comm. Math. Phys. 1989 501 505

[3] Burton, R. M., Keane, M. Topological and metric properties of infinite clusters in stationary two-dimensional site percolation Israel J. Math. 1991 299 316

[4] Benjamini, I., Lyons, R., Peres, Y., Schramm, O. Group-invariant percolation on graphs Geom. Funct. Anal. 1999 29 66

[5] Benjamini, Itai, Lyons, Russell, Peres, Yuval, Schramm, Oded Critical percolation on any nonamenable group has no infinite clusters Ann. Probab. 1999 1347 1356

[6] Benjamini, Itai, Schramm, Oded Percolation beyond 𝐙^{𝐝}, many questions and a few answers Electron. Comm. Probab. 1996

[7] Beardon, Alan F., Stephenson, Kenneth The uniformization theorem for circle packings Indiana Univ. Math. J. 1990 1383 1425

[8] Cannon, James W., Floyd, William J., Kenyon, Richard, Parry, Walter R. Hyperbolic geometry 1997 59 115

[9] Doyle, Peter G., Snell, J. Laurie Random walks and electric networks 1984

[10] Grimmett, G. R., Newman, C. M. Percolation in ∞+1 dimensions 1990 167 190

[11] Grimmett, Geoffrey Percolation 1989

[12] Hã¤Ggstrã¶M, Olle Infinite clusters in dependent automorphism invariant percolation on trees Ann. Probab. 1997 1423 1436

[13] Hã¤Ggstrã¶M, Olle, Peres, Yuval Monotonicity of uniqueness for percolation on Cayley graphs: all infinite clusters are born simultaneously Probab. Theory Related Fields 1999 273 285

[14] He, Zheng-Xu, Schramm, O. Hyperbolic and parabolic packings Discrete Comput. Geom. 1995 123 149

[15] Imrich, Wilfried On Whitney’s theorem on the unique embeddability of 3-connected planar graphs 1975

[16] Lalley, Steven P. Percolation on Fuchsian groups Ann. Inst. H. Poincaré Probab. Statist. 1998 151 177

[17] Mader, W. Über den Zusammenhang symmetrischer Graphen Arch. Math. (Basel) 1970 331 336

[18] Meester, Ronald, Roy, Rahul Continuum percolation 1996

[19] Pak, Igor, Smirnova-Nagnibeda, Tatiana On non-uniqueness of percolation on nonamenable Cayley graphs C. R. Acad. Sci. Paris Sér. I Math. 2000 495 500

[20] Schonmann, Roberto H. Stability of infinite clusters in supercritical percolation Probab. Theory Related Fields 1999 287 300

[21] Schmutz Schaller, Paul Extremal Riemann surfaces with a large number of systoles 1997 9 19

[22] Watkins, Mark E. Connectivity of transitive graphs J. Combinatorial Theory 1970 23 29

Cité par Sources :