Definable sets, motives and 𝑝-adic integrals
Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 429-469

Voir la notice de l'article provenant de la source American Mathematical Society

We associate a canonical virtual motive to definable sets over a field of characteristic zero. We use this construction to show that very general $p$-adic integrals are canonically interpolated by motivic ones.
DOI : 10.1090/S0894-0347-00-00360-X

Denef, Jan 1 ; Loeser, François 2

1 Department of Mathematics, University of Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
2 Département de mathématiques et applications, École Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France (UMR 8553 du CNRS)
@article{10_1090_S0894_0347_00_00360_X,
     author = {Denef, Jan and Loeser, Fran\~A{\textsection}ois},
     title = {Definable sets, motives and {\dh}‘-adic integrals},
     journal = {Journal of the American Mathematical Society},
     pages = {429--469},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2001},
     doi = {10.1090/S0894-0347-00-00360-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00360-X/}
}
TY  - JOUR
AU  - Denef, Jan
AU  - Loeser, François
TI  - Definable sets, motives and 𝑝-adic integrals
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 429
EP  - 469
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00360-X/
DO  - 10.1090/S0894-0347-00-00360-X
ID  - 10_1090_S0894_0347_00_00360_X
ER  - 
%0 Journal Article
%A Denef, Jan
%A Loeser, François
%T Definable sets, motives and 𝑝-adic integrals
%J Journal of the American Mathematical Society
%D 2001
%P 429-469
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00360-X/
%R 10.1090/S0894-0347-00-00360-X
%F 10_1090_S0894_0347_00_00360_X
Denef, Jan; Loeser, François. Definable sets, motives and 𝑝-adic integrals. Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 429-469. doi: 10.1090/S0894-0347-00-00360-X

[1] Ax, James The elementary theory of finite fields Ann. of Math. (2) 1968 239 271

[2] Del Baã±O Rollin, Sebastian, Navarro Aznar, Vicente On the motive of a quotient variety Collect. Math. 1998 203 226

[3] Bollaerts, Dirk On the Poincaré series associated to the 𝑝-adic points on a curve Acta Arith. 1988 9 30

[4] Chatzidakis, Zoã©, Van Den Dries, Lou, Macintyre, Angus Definable sets over finite fields J. Reine Angew. Math. 1992 107 135

[5] Deligne, Pierre La conjecture de Weil. I Inst. Hautes Études Sci. Publ. Math. 1974 273 307

[6] Denef, J. The rationality of the Poincaré series associated to the 𝑝-adic points on a variety Invent. Math. 1984 1 23

[7] Denef, Jan 𝑝-adic semi-algebraic sets and cell decomposition J. Reine Angew. Math. 1986 154 166

[8] Denef, J. On the evaluation of certain 𝑝-adic integrals 1985 25 47

[9] Denef, J. On the degree of Igusa’s local zeta function Amer. J. Math. 1987 991 1008

[10] Denef, Jan, Loeser, Franã§Ois Motivic Igusa zeta functions J. Algebraic Geom. 1998 505 537

[11] Denef, Jan, Loeser, Franã§Ois Germs of arcs on singular algebraic varieties and motivic integration Invent. Math. 1999 201 232

[12] Denef, Jan, Loeser, Franã§Ois Motivic exponential integrals and a motivic Thom-Sebastiani theorem Duke Math. J. 1999 285 309

[13] Enderton, Herbert B. A mathematical introduction to logic 1972

[14] Fried, Michael, Haran, Dan, Jarden, Moshe Galois stratification over Frobenius fields Adv. in Math. 1984 1 35

[15] Fried, Michael D., Haran, Dan, Jarden, Moshe Effective counting of the points of definable sets over finite fields Israel J. Math. 1994 103 133

[16] Fried, Michael D., Jarden, Moshe Field arithmetic 1986

[17] Fried, M., Sacerdote, G. Solving Diophantine problems over all residue class fields of a number field and all finite fields Ann. of Math. (2) 1976 203 233

[18] Gillet, H., Soulã©, C. Descent, motives and 𝐾-theory J. Reine Angew. Math. 1996 127 176

[19] Kiefe, Catarina Sets definable over finite fields: their zeta-functions Trans. Amer. Math. Soc. 1976 45 59

[20] Nakayama, Tadasi On Frobeniusean algebras. I Ann. of Math. (2) 1939 611 633

[21] Macintyre, Angus Rationality of 𝑝-adic Poincaré series: uniformity in 𝑝 Ann. Pure Appl. Logic 1990 31 74

[22] Oesterlã©, Joseph Réduction modulo 𝑝ⁿ des sous-ensembles analytiques fermés de 𝑍^{𝑁}_{𝑝} Invent. Math. 1982 325 341

[23] Pas, Johan Uniform 𝑝-adic cell decomposition and local zeta functions J. Reine Angew. Math. 1989 137 172

[24] Scholl, A. J. Classical motives 1994 163 187

[25] Serre, Jean-Pierre Zeta and 𝐿 functions 1965 82 92

[26] Serre, Jean-Pierre Quelques applications du théorème de densité de Chebotarev Inst. Hautes Études Sci. Publ. Math. 1981 323 401

[27] Veys, Willem Reduction modulo 𝑝ⁿ of 𝑝-adic subanalytic sets Math. Proc. Cambridge Philos. Soc. 1992 483 486

Cité par Sources :